下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、“平方根”與“立方根”知識點小結(jié)一、知識要點1、平方根 :、定義:如果 x2 =a,則 x 叫做 a 的平方根,記作“a ”( a 稱為被開方數(shù)) 。、性質(zhì):正數(shù)的平方根有兩個,它們互為相反數(shù);0 的平方根是 0;負數(shù)沒有平方根。、算術(shù)平方根:正數(shù) a 的正的平方根叫做a 的算術(shù)平方根,記作“a ”。2、立方根 :、定義:如果 x3 =a,則 x 叫做 a 的立方根,記作“3 a ”(a 稱為被開方數(shù)) 。、性質(zhì):正數(shù)有一個正的立方根;0 的立方根是 0;負數(shù)有一個負的立方根。3、開平方(開立方) :求一個數(shù)的平方根(立方根)的運算叫開平方(開立方)。二、規(guī)律總結(jié):1、平方根是其本身的數(shù)是0;
2、算術(shù)平方根是其本身的數(shù)是0 和 1;立方根是其本身的數(shù)是0和±1。2、每一個正數(shù)都有兩個互為相反數(shù)的平方根,其中正的那個是算術(shù)平方根; 任何一個數(shù)都有唯一一個立方根,這個立方根的符號與原數(shù)相同。3、 a 本身為非負數(shù),即a 0;a 有意義的條件是 a 0。4、公式: ( a )2=a(a 0); 3a =3 a (a 取任何數(shù))。5、非負數(shù)的重要性質(zhì):若幾個非負數(shù)之和等于0,則每一個非負數(shù)都為0例 1求下列各數(shù)的平方根和算術(shù)平方根(1) 64 ;(2) ( 3)2 ; (3)115 ; 149(3)2例 2 求下列各式的值( 1)81 ; (2)16 ; (3)9;(4) (4)2.
3、25( 5)1.44 ,( 6)36 ,( 7)25( )( 25)2498例 3、求下列各數(shù)的立方根: 343;2 10 ; 0.72927二、巧用被開方數(shù)的非負性求值.當 a0 時, a 的平方根是±a ,即 a 是非負數(shù) .例 4、若2xx2y6, 求 y x 的立方根 .練習(xí):已知 y12x2x12, 求 x y 的值 .三、巧用正數(shù)的兩平方根是互為相反數(shù)求值.當 a 0 時, a 的平方根是±a ,而 ( a) ( a ) 0.例 5、已知:一個正數(shù)的平方根是2a-1 與 2-a ,求 a 的平方的相反數(shù)的立方根 .練習(xí):若 2a3 和 a 12是數(shù) m 的平方根
4、,求 m 的值 .四、巧解方程例 6、解方程( 1)( x+1) 2 =36(2)27(x+1) 3=64五、巧用算術(shù)平方根的最小值求值.a0 , 即 a=0 時其值最小 , 換句話說a 的最小值是零 .例 4、已知: y=a23(b1) , 當 a、b 取不同的值時, y 也有不同的值 . 當 y 最小時 , 求 ba 的非算術(shù)平方根 .練習(xí)已知x3y3( z2)20 ,求 xyz 的值。已知互為相反數(shù),求a,b 的值。六、實數(shù)1、實數(shù) :有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)我們一般用下列兩種情況將實數(shù)進行分類:按屬性分類:按符號分類2關(guān)于有理數(shù)的運算法則 :運算規(guī)律和運算性質(zhì),在進行實數(shù)運算時仍適用在
5、實數(shù)范圍內(nèi),不僅可以進行加減乘除乘方運算,而且正數(shù)和零總可以進行開平方運算,任何一個數(shù)都可以開立方運算3實數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系: 實數(shù)和數(shù)軸上的點一一對應(yīng), 即每一個實數(shù)都可以用數(shù)軸上的一個點表示反過來,數(shù)軸上的每一個點都可以表示一個實數(shù)可以用幾何作圖方法,在數(shù)軸上表示某些無理數(shù),如、等思考:(1) a2 一定是負數(shù)嗎?a 一定是正數(shù)嗎?(2)我們都知道是一個無理數(shù),那么1 在哪兩個整數(shù)之間?(3) 15 的整數(shù)部分為 a,小數(shù)部分為 b,則 a=_, b=_(4) 實數(shù)包括 _或_;3 53, 0.28 ,0,4 , 3.14159,0.121121112L ,3 ,22 其中無(5)下列各數(shù):,7理數(shù)有()個七、實數(shù)大小比較的方法一、平方法3和3 的大小二、求差法比較51比較2和1的大小2練習(xí):比較下列各組數(shù)的大?。? 和3; 3和32
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人咨詢合作合同書范本(專業(yè)版)
- 2024技術(shù)開發(fā)服務(wù)合同范文
- 16大家一起來合作(說課稿)統(tǒng)編版道德與法治一年級下冊
- 專用酒店家具上漆協(xié)議范例
- 個人二零二四年度汽車租賃合同6篇
- 職業(yè)學(xué)院車輛準停準行辦理申請表
- 福建省南平市武夷山上梅中學(xué)2021-2022學(xué)年高三物理測試題含解析
- 2024年貨車司機雇傭合同文本
- 商務(wù)禮儀助力銷售
- 品質(zhì)之路:時尚生活探索
- 健康教育工作考核記錄表
- 路面輪胎模型建立方法swift
- 裝飾工程施工技術(shù)ppt課件(完整版)
- SJG 05-2020 基坑支護技術(shù)標準-高清現(xiàn)行
- 汽車維修價格表
- 10KV供配電工程施工組織設(shè)計
- C#讀取DXF文件
- 支付平臺線上統(tǒng)一對賬接口說明V0.2.docx
- 瀝青路面損壞調(diào)查表-帶公式
- 現(xiàn)場電氣安全隱患排查表(含檢查內(nèi)容和參考標準)
- 合同簽訂與審查的風(fēng)險防控培訓(xùn)課件
評論
0/150
提交評論