


版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、.函數(shù)名 正弦 余弦 正切 余切 正割 余割 在平面直角坐標(biāo)系xOy中,從點(diǎn)O引出一條射線OP,設(shè)旋轉(zhuǎn)角為,設(shè)OP=r,P點(diǎn)的坐標(biāo)為x,y有 正弦函數(shù) sin=y/r 余弦函數(shù) cos=x/r 正切函數(shù) tan=y/x 余切函數(shù) cot=x/y 正割函數(shù) sec=r/x 余割函數(shù) csc=r/y 斜邊為r,對(duì)邊為y,鄰邊為x。 以及兩個(gè)不常用,已趨于被淘汰的函數(shù): 正矢函數(shù) versin =1-cos 余矢函數(shù) covers =1-sin 正弦sin:角的對(duì)邊比上斜邊 余弦cos:角的鄰邊比上斜邊 正切tan:角的對(duì)邊比上鄰邊 余切cot:角的鄰邊比上對(duì)邊 正割sec:角的斜邊比上鄰邊 余割c
2、sc:角的斜邊比上對(duì)邊編輯本段同角三角函數(shù)間的根本關(guān)系式: ·平方關(guān)系: sin²()+cos²()=1 cos²(a)=(1+cos2a)/2 tan²()+1=sec²() sin²(a)=(1-cos2a)/2 cot²()+1=csc²() ·積的關(guān)系: sin=tan*cos cos=cot*sin tan=sin*sec cot=cos*csc sec=tan*csc csc=sec*cot ·倒數(shù)關(guān)系: tan·cot=1 sin·csc=1 cos&
3、#183;sec=1 直角三角形ABC中, 角A的正弦值就等于角A的對(duì)邊比斜邊, 余弦等于角A的鄰邊比斜邊 正切等于對(duì)邊比鄰邊, ·三角函數(shù)恒等變形公式 ·兩角和與差的三角函數(shù): cos(+)=cos·cos-sin·sin cos(-)=cos·cos+sin·sin sin(±)=sin·cos±cos·sin tan(+)=(tan+tan)/(1-tan·tan) tan(-)=(tan-tan)/(1+tan·tan) ·三角和的三角函數(shù): sin(+)=
4、sin·cos·cos+cos·sin·cos+cos·cos·sin-sin·sin·sin cos(+)=cos·cos·cos-cos·sin·sin-sin·cos·sin-sin·sin·cos tan(+)=(tan+tan+tan-tan·tan·tan)/(1-tan·tan-tan·tan-tan·tan) ·輔助角公式: Asin+Bcos=(A²
5、+B²)(1/2)sin(+t),其中 sint=B/(A²+B²)(1/2) cost=A/(A²+B²)(1/2) tant=B/A Asin+Bcos=(A²+B²)(1/2)cos(-t),tant=A/B ·倍角公式: sin(2)=2sin·cos=2/(tan+cot) cos(2)=cos²()-sin²()=2cos²()-1=1-2sin²() tan(2)=2tan/1-tan²() ·三倍角公式: sin(3)=3sin-
6、4sin³() cos(3)=4cos³()-3cos ·半角公式: sin(/2)=±(1-cos)/2) cos(/2)=±(1+cos)/2) tan(/2)=±(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin ·降冪公式 sin²()=(1-cos(2)/2=versin(2)/2 cos²()=(1+cos(2)/2=covers(2)/2 tan²()=(1-cos(2)/(1+cos(2) ·萬能公式: sin=2tan(/2)/1+tan&
7、#178;(/2) cos=1-tan²(/2)/1+tan²(/2) tan=2tan(/2)/1-tan²(/2) ·積化和差公式: sin·cos=(1/2)sin(+)+sin(-) cos·sin=(1/2)sin(+)-sin(-) cos·cos=(1/2)cos(+)+cos(-) sin·sin=-(1/2)cos(+)-cos(-) ·和差化積公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/
8、2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 ·推導(dǎo)公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos² 1-cos2=2sin² 1+sin=(sin/2+cos/2)² ·其他: sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin²()+sin²(-2/3)+sin²(+
9、2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 cosx+cos2x+.+cosnx= sin(n+1)x+sinnx-sinx/2sinx 證明: 左邊=2sinx(cosx+cos2x+.+cosnx)/2sinx =sin2x-0+sin3x-sinx+sin4x-sin2x+.+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x/2sinx 積化和差 =sin(n+1)x+sinnx-sinx/2sinx=右邊 等式得證 sinx+sin2x+.+sinnx= - cos(n+1)x+cosnx-cosx-1/2sin
10、x 證明: 左邊=-2sinxsinx+sin2x+.+sinnx/(-2sinx) =cos2x-cos0+cos3x-cosx+.+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x/(-2sinx) =- cos(n+1)x+cosnx-cosx-1/2sinx=右邊 等式得證編輯本段三角函數(shù)的誘導(dǎo)公式 公式一: 設(shè)為任意角,終邊一樣的角的同一三角函數(shù)的值相等: sin2ksin cos2kcos tan2ktan cot2kcot 公式二: 設(shè)為任意角,+的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系: sinsin coscos tantan cotcot 公式三: 任意角
11、與 -的三角函數(shù)值之間的關(guān)系: sinsin coscos tantan cotcot 公式四: 利用公式二和公式三可以得到-與的三角函數(shù)值之間的關(guān)系: sinsin coscos tantan cotcot 公式五: 利用公式一和公式三可以得到2-與的三角函數(shù)值之間的關(guān)系: sin2sin cos2cos tan2tan cot2cot 公式六: /2±及3/2±與的三角函數(shù)值之間的關(guān)系: sin/2cos cos/2sin tan/2cot cot/2tan sin/2cos cos/2sin tan/2cot cot/2tan sin3/2cos cos3/2sin
12、tan3/2cot cot3/2tan sin3/2cos cos3/2sin tan3/2cot cot3/2tan (以上kZ)編輯本段正余弦定理 正弦定理是指在一個(gè)三角形中,各邊和它所對(duì)的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R 余弦定理是指三角形中任何一邊的平方等于其它兩邊的平方和減去這兩邊與它們夾角的余弦的積的2倍,即a2=b2+c2-2bc cosA 角A的對(duì)邊于斜邊的比叫做角A的正弦,記作sinA,即sinA=角A的對(duì)邊/斜邊 斜邊與鄰邊夾角a sin=y/r 無論y>x或yx 無論a多大多小可以任意大小 正弦的最大值為1 最小值為-編輯本段局部高
13、等內(nèi)容 ·高等代數(shù)中三角函數(shù)的指數(shù)表示(由泰勒級(jí)數(shù)易得): sinx=e(ix)-e(-ix)/(2i) cosx=e(ix)+e(-ix)/2 tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix) 泰勒展開有無窮級(jí)數(shù),ez=exp(z)1z/1!z2/2!z3/3!z4/4!zn/n! 此時(shí)三角函數(shù)定義域已推廣至整個(gè)復(fù)數(shù)集。 ·三角函數(shù)作為微分方程的解: 對(duì)于微分方程組 y=-y''y=y'''',有通解Q,可證明 Q=Asinx+Bcosx,因此也可以從此出發(fā)定義三角函數(shù)。 補(bǔ)充:由相應(yīng)的指數(shù)表示我們可以定義一
14、種類似的函數(shù)雙曲函數(shù),其擁有很多與三角函數(shù)的類似的性質(zhì),二者相映成趣。 特殊角的三角函數(shù): 角度a 0° 30° 45° 60° 90° 120° 180° 1.sina 0 1/2 2/2 3/2 1 3/2 0 2.cosa 1 3/2 2/2 1/2 0 -1/2 -1 3.tana 0 3/3 1 3 無限大 -3 0 4.cota / 3 1 3/3 0 -3/3 /編輯本段三角函數(shù)的計(jì)算 冪級(jí)數(shù) c0+c1x+c2x2+.+xn+.=xn (n=0.) c0+c1(x-a)+c2(x-a)2+.+(x-a)n+.
15、=(x-a)n (n=0.) 它們的各項(xiàng)都是正整數(shù)冪的冪函數(shù), 其中c0,c1,c2,.及a都是常數(shù), 這種級(jí)數(shù)稱為冪級(jí)數(shù). 泰勒展開式(冪級(jí)數(shù)展開法): f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+.f(n)(a)/n!*(x-a)n+. 實(shí)用冪級(jí)數(shù): ex = 1+x+x2/2!+x3/3!+.+xn/n!+. ln(1+x)= x-x2/3+x3/3-.(-1)k-1*xk/k+. (|x|<1) sin x = x-x3/3!+x5/5!-.(-1)k-1*x2k-1/(2k-1)!+. (-<x<) c
16、os x = 1-x2/2!+x4/4!-.(-1)k*x2k/(2k)!+. (-<x<) arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + . (|x|<1) arccos x = - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + . ) (|x|<1) arctan x = x - x3/3 + x5/5 - . (x1) sinh x = x+x3/3!+x5/5!+.(-1)k-1*x2k-1/(2k-1)!+. (-<x<) cosh x = 1+x2/2!+x4/4!+.(-1)k*x2
17、k/(2k)!+. (-<x<) arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - . (|x|<1) arctanh x = x + x3/3 + x5/5 + . (|x|<1) 在解初等三角函數(shù)時(shí),只需記住公式便可輕松作答,在競(jìng)賽中,往往會(huì)用到與圖像結(jié)合的方法求三角函數(shù)值、三角函數(shù)不等式、面積等等。 - 傅立葉級(jí)數(shù)(三角級(jí)數(shù)) f(x)=a0/2+(n=0.) (ancosnx+bnsinnx) a0=1/(.-) (f(x)dx an=1/(.-) (f(x)cosnx)dx bn=1/(.-) (f(x)sinnx)dx
18、三角函數(shù)的數(shù)值符號(hào) 正弦 第一,二象限為正, 第三,四象限為負(fù) 余弦 第一,四象限為正 第二,三象限為負(fù) 正切 第一,三象限為正 第二,四象限為負(fù)編輯本段三角函數(shù)定義域和值域 sin(x),cos(x)的定義域?yàn)镽,值域?yàn)?1,1 tan(x)的定義域?yàn)閤不等于/2+k,值域?yàn)镽 cot(x)的定義域?yàn)閤不等于k,值域?yàn)镽編輯本段初等三角函數(shù)導(dǎo)數(shù) y=sinx-y'=cosx y=cosx-y'=-sinx y=tanx-y'=1/(cosx)² =(secx)² y=cotx-y'=-1/(sinx)² =-(cscx)² y=secx-y'=secxtanx y=cscx-y'=-cscxcotx y=arcsinx-y'=1/1-x² y=arccosx-y'=-1/1-x² y=arctanx-y'=1/(1+x²) y=arccotx-y'=-1/(1+x²)編輯
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度酒店客房團(tuán)隊(duì)協(xié)議價(jià)合同樣本
- 二零二五年度個(gè)人車輛抵押汽車抵押擔(dān)保公司服務(wù)合同
- 2025年度網(wǎng)絡(luò)安全事件中合同法律制度應(yīng)對(duì)策略
- 二零二五年度物業(yè)公司物業(yè)服務(wù)收費(fèi)標(biāo)準(zhǔn)協(xié)議
- 二零二五年度合作購買農(nóng)業(yè)用地協(xié)議書(現(xiàn)代農(nóng)業(yè))
- 2025年度企業(yè)員工國際交流與跨文化培訓(xùn)服務(wù)協(xié)議
- 2025年度農(nóng)村宅基地贈(zèng)與合同起草與審核指南
- 2025年度小產(chǎn)權(quán)房買賣合同三方房產(chǎn)租賃及買賣聯(lián)合協(xié)議
- 人教版七年級(jí)歷史與社會(huì)下冊(cè)6.2.4-我國的經(jīng)濟(jì)中心-上海教學(xué)設(shè)計(jì)
- 14-2《荷塘月色》教學(xué)設(shè)計(jì) 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊(cè)
- 《射頻同軸電纜》課件2
- 口腔頜面部感染患者的營養(yǎng)狀況及輔助營養(yǎng)治療策略
- 以工代賑政策培訓(xùn)課件
- 垃圾分類校本教材
- 中職學(xué)生開學(xué)心理知識(shí)講座
- 虛擬現(xiàn)實(shí)技術(shù)中的智能感知與識(shí)別技術(shù)應(yīng)用
- DD 2014-11 地面沉降干涉雷達(dá)數(shù)據(jù)處理技術(shù)規(guī)程
- 咖啡與茶文化培訓(xùn)1
- 一+《展示國家工程++了解工匠貢獻(xiàn)》(教學(xué)課件)-【中職專用】高二語文精講課堂(高教版2023·職業(yè)模塊)
- DIY服裝營銷計(jì)劃書
- 非標(biāo)設(shè)備合同范本
評(píng)論
0/150
提交評(píng)論