



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、人教A版(2019)必修第一冊(cè)學(xué)案第一章集合與常用邏輯用語1.1集合的概念【使用說明及學(xué)法指導(dǎo)】1.預(yù)學(xué)指導(dǎo):精讀教材的內(nèi)容,完成預(yù)學(xué)案,找出自己的疑惑;2.探究指導(dǎo):小組成員依次發(fā)表觀點(diǎn),有組織,有記錄,有展示,有點(diǎn)評(píng);3.展示指導(dǎo):規(guī)范審題,規(guī)范書寫,規(guī)范步驟,規(guī)范運(yùn)算;4.檢測(cè)指導(dǎo):課堂上定時(shí)訓(xùn)練,展示答案;5.總結(jié)指導(dǎo):回扣學(xué)習(xí)目標(biāo),總結(jié)本節(jié)內(nèi)容.第2課時(shí)集合的表示【預(yù)學(xué)案】知識(shí)點(diǎn)1列舉法把集合的所有元素_一一列舉_出來,并用花括號(hào)“”括起來表示集合的方法思考1:哪些集合適合用列舉法表示?提示:(1)含有有限個(gè)元素且個(gè)數(shù)較少的集合(2)元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不至于發(fā)生
2、誤解的情況下,也可列出幾個(gè)元素作代表,其他元素用省略號(hào)表示,如N可表示為0,1,2,n,(3)當(dāng)集合所含元素不易表述時(shí),用列舉法表示方便如集合x2,x2y2,x3知識(shí)點(diǎn)2描述法1設(shè)A是一個(gè)集合,把集合A中所有具有_共同特征_P(x)的元素x所組成的集合表示為xA|P(x)2具體步驟:(1)在花括號(hào)內(nèi)寫上表示這個(gè)集合的元素的一般符號(hào)及取值(或變化)范圍(2)畫一條豎線(3)在豎線后寫出這個(gè)集合中元素所具有的共同特征思考2:什么類型的集合適合描述法表示?提示:描述法可以看清集合的元素特征,一般含較多元素或無數(shù)多個(gè)元素(無限集)且排列無明顯規(guī)律的集合,或者元素不能一一列舉的集合,宜用描述法預(yù)學(xué)自測(cè):
3、1判斷下列說法是否正確,正確的打“”,錯(cuò)誤的打“×”(1)由1,1,2,3組成的集合可用列舉法表示為1,1,2,3(×)(2)集合(1,2)中的元素是1和2.(×)(3)集合Ax|x10與集合B1表示同一個(gè)集合()2不等式x3<2且xN*的解集用列舉法可表示為_1,2,3,4_.3方程組的解集可表示為_(填序號(hào));1,2;(x,y)|x1,y24說明下列各集合的含義:Ay|y;B(x,y)|1;C(0,1);Dxy1,xy1解析A表示y的取值集合,由反比例函數(shù)的圖象,知AyR|y0,B的代表元素是點(diǎn)(x,y),其表示直線yx3上除去點(diǎn)(3,0)外所有點(diǎn)組成的
4、集合C表示一個(gè)單元素集,元素是一個(gè)有序?qū)崝?shù)對(duì)(0,1)D表示以方程“xy1”和“xy1”為元素的一個(gè)二元素集【我的疑惑】 _【探究案】探究一:列舉法表示集合例1 用列舉法表示下列集合:(1)36與60的公約數(shù)組成的集合;(2)方程(x4)2(x2)0的根組成的集合;(3)一次函數(shù)yx1與yx的圖象的交點(diǎn)組成的集合分析(1)(2)可直接求出相應(yīng)元素,然后用列舉法表示;(3)聯(lián)立求方程組的解寫出交點(diǎn)坐標(biāo)用集合表示解析(1)36與60的公約數(shù)有1,2,3,4,6,12,所求集合為1,2,3,4,6,12(2)方程(x4)2(x2)0的根是4,2,所求集合為2,4(3)方程組的解是,所求集合為(,)歸
5、納提升1.用列舉法表示集合,要注意是數(shù)集還是點(diǎn)集2列舉法適合表示有限集,當(dāng)集合中元素個(gè)數(shù)較少時(shí),用列舉法表示集合比較方便,且使人一目了然因此,集合是有限集還是無限集,是選擇恰當(dāng)?shù)谋硎痉椒ǖ年P(guān)鍵【對(duì)點(diǎn)練習(xí)】 用列舉法表示下列集合:(1)不大于10的非負(fù)偶數(shù)組成的集合;(2)方程x2x的所有實(shí)數(shù)解組成的集合;(3)直線y2x3與y軸的交點(diǎn)所組成的集合解析(1)因?yàn)椴淮笥?0是指小于或等于10,非負(fù)是大于或等于0的意思所以不大于10的非負(fù)偶數(shù)集是0,2,4,6,8,10(2)方程x2x的解是x0或x1,所以方程的解組成的集合為0,1(3)將x0代入y2x3,得y3,即交點(diǎn)是(0,3),故兩直線的交點(diǎn)
6、組成的集合是(0,3)探究二:用描述法表示集合例2 用描述法表示下列集合:(1)所有不小于2,且不大于20的實(shí)數(shù)組成的集合;(2)平面直角坐標(biāo)系內(nèi)第二象限內(nèi)的點(diǎn)組成的集合;(3)使y有意義的實(shí)數(shù)x組成的集合;(4)200以內(nèi)的正奇數(shù)組成的集合;(5)方程x25x60的解組成的集合分析用描述法表示集合時(shí),關(guān)鍵要弄清元素的屬性是什么,再給出其滿足的性質(zhì),注意不要漏掉類似“xN”等條件解析(1)集合可表示為xR|2x20(2)第二象限內(nèi)的點(diǎn)(x,y)滿足x<0,且y>0,故集合可表示為(x,y)|x<0,y>0(3)要使該式有意義,需有,解得x2,且x0.故此集合可表示為x|
7、x2,且x0(4)x|x2k1,x<200,kN(5)x|x25x60歸納提升用描述法表示集合應(yīng)注意的問題1寫清楚該集合中的代表元素,即弄清代表元素是數(shù)、點(diǎn)還是其他對(duì)象2準(zhǔn)確說明集合中元素所滿足的特征3所有描述的內(nèi)容都要寫在集合符號(hào)內(nèi),并且不能出現(xiàn)未被說明的符號(hào)4用于描述的語句力求簡(jiǎn)明、準(zhǔn)確,多層描述時(shí),應(yīng)準(zhǔn)確使用“且”“或”等表示描述語句之間的關(guān)系【對(duì)點(diǎn)練習(xí)】 用描述法表示下列集合:(1)大于4的全體奇數(shù)組成的集合;(2)二次函數(shù)y3x21圖象上的所有點(diǎn)組成的集合;(3)所有的三角形組成的集合解析(1)奇數(shù)可表示為2k1,kZ,又因?yàn)榇笥?,故k2,故可用描述法表示為x|x2k1,kN
8、,且k2(2)點(diǎn)可用實(shí)數(shù)對(duì)表示,故可表示為(x,y)|y3x21(3)x|x是三角形探究三:集合中的方程問題例3 設(shè)yx2axb,Ax|yx0,Bx|yax0,若A3,1,試用列舉法表示集合B分析集合A,B都表示關(guān)于x的一元二次方程的解集,而A已知,可根據(jù)根與系數(shù)的關(guān)系確定a和b的值,再解集合B中的方程,從而求出B中的元素解析集合A中的方程為x2axbx0,整理得x2(a1)xb0.因?yàn)锳3,1,所以方程x2(a1)xb0的兩根為3,1.由根與系數(shù)的關(guān)系,得解得所以集合B中的方程為x26x30,解得x3±2,所以B32,32歸納提升集合與方程的綜合問題的解題思路(1)弄清方程與集合的
9、關(guān)系,往往是用集合表示方程的解集,集合中的元素就是方程的根(2)當(dāng)方程中含有參數(shù)時(shí),若方程是一元二次方程,則應(yīng)綜合應(yīng)用一元二次方程的相關(guān)知識(shí)求解若知道其解集,利用根與系數(shù)的關(guān)系,可快速求出參數(shù)的值(或參數(shù)之間的關(guān)系);若知道解集元素個(gè)數(shù),利用判別式可求參數(shù)的取值范圍【對(duì)點(diǎn)練習(xí)】 (1)已知集合Ax|x2axb0,若A2,3,求a,b的值(2)已知集合Mx|ax22x20,aR中至多有一個(gè)元素,求實(shí)數(shù)a的取值范圍解析(1)由A2,3知,方程x2axb0的兩根為2,3,由根與系數(shù)的關(guān)系得因此a5,b6.(2)當(dāng)a0時(shí),方程化為2x20,解得x1,此時(shí)M1,滿足條件當(dāng)a0時(shí),方程為一元二次方程,由題
10、意得48a0,即a,此時(shí)方程無實(shí)數(shù)根或有兩個(gè)相等的實(shí)數(shù)根綜合(1)(2)可知,當(dāng)a或a0時(shí),集合M中至多有一個(gè)元素誤區(qū)警示:忽視集合中元素的互異性例4 方程x2(a1)xa0的解集為_1(a1)或1,a(a1)_.錯(cuò)解x2(a1)xa0,即(xa)(x1)0,所以方程的實(shí)數(shù)根為x1或xa,則方程的解集為1,a錯(cuò)因分析錯(cuò)解中沒有注意到字母a的取值帶有不確定性,得到了錯(cuò)誤答案1,a事實(shí)上,當(dāng)a1時(shí),不滿足集合中元素的互異性正解x2(a1)xa(xa)(x1)0,所以方程的解為x1或xa.若a1,則方程的解集為1;若a1,則方程的解集為1,a故填1(a1)或1,a(a1)方法點(diǎn)撥在剛學(xué)習(xí)集合的相關(guān)概
11、念時(shí),對(duì)含有參數(shù)的集合問題容易出錯(cuò),盡管知道集合中元素是互異的,也不會(huì)寫出1,1這種形式,但當(dāng)字母a出現(xiàn)時(shí),就會(huì)忽略a1的情況,因此要重點(diǎn)注意一定要記?。寒?dāng)集合中的元素用字母表示時(shí),求出參數(shù)后一定要代入檢驗(yàn),確保集合中元素的互異性【檢測(cè)案】1下列集合中,不同于另外三個(gè)集合的是(C)Ax|x2 019By|(y2 019)20Cx2 019D2 019解析選項(xiàng)A、B是集合的描述法表示,選項(xiàng)D是集合的列舉法表示,且都表示集合中只有一個(gè)元素2 019,都是數(shù)集而選項(xiàng)C它是由方程構(gòu)成的集合,集合是列舉法且只含有一個(gè)方程2由大于3且小于11的偶數(shù)所組成的集合是(D)Ax|3<x<11,xQB
12、x|3<x<11Cx|3<x<11,x2k,kNDx|3<x<11,x2k,kZ解析因?yàn)樗蟮臄?shù)為偶數(shù),所以可設(shè)為x2k,kZ,又因?yàn)榇笥?且小于11,所以3<x<11,即大于3且小于11的偶數(shù)所組成的集合是x|3<x<11,x2k,kZ故選D3已知集合A1,2,3,4,5,B(x,y)|xA,yA,xyA,則B中所含元素的個(gè)數(shù)為(D)A3B6C8D10解析由A1,2,3,4,5,B(x,y)|xA,yA,xyA,當(dāng)x5時(shí),y4,3,2,1,當(dāng)x4時(shí),y3,2,1,當(dāng)x3時(shí),y2,1,當(dāng)x2時(shí),y1,所以B(5,4),(5,3),(5,2),(5,1),(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),所以B中所含元素的個(gè)數(shù)為10.4已知集合A1,0,1,集合By|y|x|,xA,則B_0,1_.解析A1,0,1,當(dāng)x1,或1時(shí),y1,當(dāng)x0時(shí),y0,B0,15用列舉法表示下列集合(1)AxZ|Z;(2)By|yx29,xZ,yZ,y>0;(3)C(x,y)|yx26,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市基礎(chǔ)設(shè)施建設(shè)進(jìn)度監(jiān)控措施
- 綠色可回收包裝的創(chuàng)新設(shè)計(jì)與供應(yīng)鏈優(yōu)化-全面剖析
- 無監(jiān)督學(xué)習(xí)在數(shù)據(jù)挖掘中的應(yīng)用-全面剖析
- 摩托車消費(fèi)行為洞察-全面剖析
- 2025人教版小學(xué)六年級(jí)語文教學(xué)計(jì)劃
- 大數(shù)據(jù)并行算法研究-全面剖析
- 游藝器材安全標(biāo)準(zhǔn)-全面剖析
- 新北師大五年級(jí)數(shù)學(xué)學(xué)期教學(xué)計(jì)劃
- 快餐店運(yùn)營(yíng)經(jīng)理的核心職責(zé)分析
- 旅游業(yè)疫情后恢復(fù)市場(chǎng)推廣計(jì)劃
- 部編版二年級(jí)下冊(cè)語文課件小企鵝心靈成長(zhǎng)故事
- FZ/T 07019-2021針織印染面料單位產(chǎn)品能源消耗限額
- 初中生職業(yè)生涯規(guī)劃課件兩篇
- 低利率時(shí)代家庭財(cái)富管理課件
- 北京七年級(jí)下學(xué)期生物期中考試試卷
- 拖欠房租起訴書【5篇】
- 護(hù)理人員儀容儀表及行為規(guī)范
- 汽車品牌馬自達(dá)課件
- 第六章廣播電視的傳播符號(hào)
- 儀器設(shè)備自校規(guī)程
- 蘇教版五下數(shù)學(xué)小數(shù)報(bào)全套高清晰含答案
評(píng)論
0/150
提交評(píng)論