版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2010年全國統(tǒng)一高考數(shù)學(xué)試卷(文科)(大綱版)一、選擇題(共12小題,每小題5分,滿分60分)1(5分)設(shè)全集U=xN+|x6,集合A=1,3,B=3,5,則U(AB)=()A1,4B1,5C2,4D2,52(5分)不等式0的解集為()Ax|2x3Bx|x2Cx|x2或x3Dx|x33(5分)已知sin=,則cos(2)=()ABCD4(5分)函數(shù)的反函數(shù)是()Ay=e2x11(x0)By=e2x1+1(x0)Cy=e2x11(xR)Dy=e2x1+1(xR)5(5分)若變量x,y滿足約束條件,則z=2x+y的最大值為()A1B2C3D46(5分)如果等差數(shù)列an中,a3+a4+a5=12,
2、那么a1+a2+a7=()A14B21C28D357(5分)若曲線y=x2+ax+b在點(diǎn)(1,b)處的切線方程是xy+1=0,則()Aa=1,b=2Ba=1,b=2Ca=1,b=2Da=1,b=28(5分)已知三棱錐SABC中,底面ABC為邊長(zhǎng)等于2的等邊三角形,SA垂直于底面ABC,SA=3,那么直線AB與平面SBC所成角的正弦值為()ABCD9(5分)將標(biāo)號(hào)為1,2,3,4,5,6的6張卡片放入3個(gè)不同的信封中,若每個(gè)信封放2張,其中標(biāo)號(hào)為1,2的卡片放入同一信封,則不同的方法共有()A12種B18種C36種D54種10(5分)ABC中,點(diǎn)D在邊AB上,CD平分ACB,若=,=,|=1,|
3、=2,則=()A+B+C+D+11(5分)與正方體ABCDA1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)()A有且只有1個(gè)B有且只有2個(gè)C有且只有3個(gè)D有無數(shù)個(gè)12(5分)已知橢圓T:+=1(ab0)的離心率為,過右焦點(diǎn)F且斜率為k(k0)的直線與T相交于A,B兩點(diǎn),若=3,則k=()A1BCD2二、填空題(共4小題,每小題5分,滿分20分)13(5分)已知是第二象限的角,tan=,則cos= 14(5分)(x+)9展開式中x3的系數(shù)是 (用數(shù)字作答)15(5分)已知拋物線C:y2=2px(p0)的準(zhǔn)線l,過M(1,0)且斜率為的直線與l相交于A,與C的一個(gè)交點(diǎn)為B,若,
4、則p= 16(5分)已知球O的半徑為4,圓M與圓N為該球的兩個(gè)小圓,AB為圓M與圓N的公共弦,AB=4,若OM=ON=3,則兩圓圓心的距離MN= 三、解答題(共6小題,滿分70分)17(10分)ABC中,D為邊BC上的一點(diǎn),BD=33,sinB=,cosADC=,求AD18(12分)已知an是各項(xiàng)均為正數(shù)的等比數(shù)列a1+a2=2(),a3+a4+a5=64+)()求an的通項(xiàng)公式;()設(shè)bn=(an+)2,求數(shù)列bn的前n項(xiàng)和Tn19(12分)如圖,直三棱柱ABCA1B1C1中,AC=BC,AA1=AB,D為BB1的中點(diǎn),E為AB1上的一點(diǎn),AE=3EB1()證明:DE為異面直線AB1與CD的
5、公垂線;()設(shè)異面直線AB1與CD的夾角為45°,求二面角A1AC1B1的大小20(12分)如圖,由M到N的電路中有4個(gè)元件,分別標(biāo)為T1,T2,T3,T4,電流能通過T1,T2,T3的概率都是P,電流能通過T4的概率是0.9,電流能否通過各元件相互獨(dú)立已知T1,T2,T3中至少有一個(gè)能通過電流的概率為0.999()求P;()求電流能在M與N之間通過的概率21(12分)已知函數(shù)f(x)=x2+ax+1lnx()當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;()若f(x)在區(qū)間(0,)上是減函數(shù),求實(shí)數(shù)a的取值范圍22(12分)已知斜率為1的直線l與雙曲線C:相交于B、D兩點(diǎn),且BD的中點(diǎn)
6、為M(1,3)()求C的離心率;()設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|BF|=17,證明:過A、B、D三點(diǎn)的圓與x軸相切2010年全國統(tǒng)一高考數(shù)學(xué)試卷(文科)(大綱版)參考答案與試題解析一、選擇題(共12小題,每小題5分,滿分60分)1(5分)設(shè)全集U=xN+|x6,集合A=1,3,B=3,5,則U(AB)=()A1,4B1,5C2,4D2,5【考點(diǎn)】1H:交、并、補(bǔ)集的混合運(yùn)算菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題【分析】由全集U=xN+|x6,可得U=1,2,3,4,5,然后根據(jù)集合混合運(yùn)算的法則即可求解【解答】解:A=1,3,B=3,5,AB=1,3,5,U=xN+|x6=1,2,3,4
7、,5,U(AB)=2,4,故選:C【點(diǎn)評(píng)】本題考查了集合的基本運(yùn)算,屬于基礎(chǔ)知識(shí),注意細(xì)心運(yùn)算2(5分)不等式0的解集為()Ax|2x3Bx|x2Cx|x2或x3Dx|x3【考點(diǎn)】73:一元二次不等式及其應(yīng)用菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題【分析】本題的方法是:要使不等式小于0即要分子與分母異號(hào),得到一個(gè)一元二次不等式,討論x的值即可得到解集【解答】解:,得到(x3)(x+2)0即x30且x+20解得:x3且x2所以無解;或x30且x+20,解得2x3,所以不等式的解集為2x3故選:A【點(diǎn)評(píng)】本題主要考查學(xué)生求不等式解集的能力,是一道基礎(chǔ)題3(5分)已知sin=,則cos(2)=()ABCD
8、【考點(diǎn)】GO:運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值;GS:二倍角的三角函數(shù)菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題【分析】先根據(jù)誘導(dǎo)公式求得cos(2a)=cos2a進(jìn)而根據(jù)二倍角公式把sin的值代入即可求得答案【解答】解:sina=,cos(2a)=cos2a=(12sin2a)=故選:B【點(diǎn)評(píng)】本題考查了二倍角公式及誘導(dǎo)公式考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)公式的記憶4(5分)函數(shù)的反函數(shù)是()Ay=e2x11(x0)By=e2x1+1(x0)Cy=e2x11(xR)Dy=e2x1+1(xR)【考點(diǎn)】4H:對(duì)數(shù)的運(yùn)算性質(zhì);4R:反函數(shù)菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;16:壓軸題【分析】從條件中中反解出x,再將x,y互
9、換即得解答本題首先熟悉反函數(shù)的概念,然后根據(jù)反函數(shù)求解三步驟:1、換:x、y換位,2、解:解出y,3、標(biāo):標(biāo)出定義域,據(jù)此即可求得反函數(shù)【解答】解:由原函數(shù)解得x=e 2y1+1,f1(x)=e 2x1+1,又x1,x10;ln(x1)R在反函數(shù)中xR,故選:D【點(diǎn)評(píng)】求反函數(shù),一般應(yīng)分以下步驟:(1)由已知解析式y(tǒng)=f(x)反求出x=(y);(2)交換x=(y)中x、y的位置;(3)求出反函數(shù)的定義域(一般可通過求原函數(shù)的值域的方法求反函數(shù)的定義域)5(5分)若變量x,y滿足約束條件,則z=2x+y的最大值為()A1B2C3D4【考點(diǎn)】7C:簡(jiǎn)單線性規(guī)劃菁優(yōu)網(wǎng)版權(quán)所有【專題】31:數(shù)形結(jié)合【
10、分析】先根據(jù)約束條件畫出可行域,設(shè)z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y過可行域內(nèi)的點(diǎn)B時(shí),從而得到m值即可【解答】解:作出可行域,作出目標(biāo)函數(shù)線,可得直線與y=x與3x+2y=5的交點(diǎn)為最優(yōu)解點(diǎn),即為B(1,1),當(dāng)x=1,y=1時(shí)zmax=3故選:C【點(diǎn)評(píng)】本題考查了線性規(guī)劃的知識(shí),以及利用幾何意義求最值,屬于基礎(chǔ)題6(5分)如果等差數(shù)列an中,a3+a4+a5=12,那么a1+a2+a7=()A14B21C28D35【考點(diǎn)】83:等差數(shù)列的性質(zhì);85:等差數(shù)列的前n項(xiàng)和菁優(yōu)網(wǎng)版權(quán)所有【分析】由等差數(shù)列的性質(zhì)求解【解答】解:a3+a4+a5=3a4=12,a4=4
11、,a1+a2+a7=7a4=28故選:C【點(diǎn)評(píng)】本題主要考查等差數(shù)列的性質(zhì)7(5分)若曲線y=x2+ax+b在點(diǎn)(1,b)處的切線方程是xy+1=0,則()Aa=1,b=2Ba=1,b=2Ca=1,b=2Da=1,b=2【考點(diǎn)】6H:利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;52:導(dǎo)數(shù)的概念及應(yīng)用【分析】由y=x2+ax+b,知y=2x+a,再由曲線y=x2+ax+b在點(diǎn)(1,b)處的切線方程為xy+1=0,求出a和b【解答】解:y=x2+ax+b,y=2x+a,y|x=1=2+a,曲線y=x2+ax+b在點(diǎn)(1,b)處的切線方程為yb=(2+a)(x1),曲線y=x2
12、+ax+b在點(diǎn)(1,b)處的切線方程為xy+1=0,a=1,b=2故選:B【點(diǎn)評(píng)】本題考查利用導(dǎo)數(shù)求曲線上某點(diǎn)切線方程的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答8(5分)已知三棱錐SABC中,底面ABC為邊長(zhǎng)等于2的等邊三角形,SA垂直于底面ABC,SA=3,那么直線AB與平面SBC所成角的正弦值為()ABCD【考點(diǎn)】MI:直線與平面所成的角菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題【分析】由圖,過A作AE垂直于BC交BC于E,連接SE,過A作AF垂直于SE交SE于F,連BF,由題設(shè)條件證出ABF即所求線面角由數(shù)據(jù)求出其正弦值【解答】解:過A作AE垂直于BC交BC于E,連接SE,過A作AF垂直于SE交SE于F
13、,連BF,正三角形ABC,E為BC中點(diǎn),BCAE,SABC,BC面SAE,BCAF,AFSE,AF面SBC,ABF為直線AB與面SBC所成角,由正三角形邊長(zhǎng)2,AE=,AS=3,SE=2,AF=,sinABF=故選:D【點(diǎn)評(píng)】本題考查了立體幾何的線與面、面與面位置關(guān)系及直線與平面所成角9(5分)將標(biāo)號(hào)為1,2,3,4,5,6的6張卡片放入3個(gè)不同的信封中,若每個(gè)信封放2張,其中標(biāo)號(hào)為1,2的卡片放入同一信封,則不同的方法共有()A12種B18種C36種D54種【考點(diǎn)】D9:排列、組合及簡(jiǎn)單計(jì)數(shù)問題菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題【分析】本題是一個(gè)分步計(jì)數(shù)問題,首先從3個(gè)信封中選一個(gè)放1,2有
14、3種不同的選法,再從剩下的4個(gè)數(shù)中選兩個(gè)放一個(gè)信封有C42,余下放入最后一個(gè)信封,根據(jù)分步計(jì)數(shù)原理得到結(jié)果【解答】解:由題意知,本題是一個(gè)分步計(jì)數(shù)問題,先從3個(gè)信封中選一個(gè)放1,2,有=3種不同的選法;根據(jù)分組公式,其他四封信放入兩個(gè)信封,每個(gè)信封兩個(gè)有=6種放法,共有3×6×1=18故選:B【點(diǎn)評(píng)】本題考查分步計(jì)數(shù)原理,考查平均分組問題,是一個(gè)易錯(cuò)題,解題的關(guān)鍵是注意到第二步從剩下的4個(gè)數(shù)中選兩個(gè)放到一個(gè)信封中,這里包含兩個(gè)步驟,先平均分組,再排列10(5分)ABC中,點(diǎn)D在邊AB上,CD平分ACB,若=,=,|=1,|=2,則=()A+B+C+D+【考點(diǎn)】9B:向量加減
15、混合運(yùn)算菁優(yōu)網(wǎng)版權(quán)所有【分析】由ABC中,點(diǎn)D在邊AB上,CD平分ACB,根據(jù)三角形內(nèi)角平分線定理,我們易得到,我們將后,將各向量用,表示,即可得到答案【解答】解:CD為角平分線,故選:B【點(diǎn)評(píng)】本題考查了平面向量的基礎(chǔ)知識(shí),解答的核心是三角形內(nèi)角平分線定理,即若AD為三角形ABC的內(nèi)角A的角平分線,則AB:AC=BD:CD11(5分)與正方體ABCDA1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)()A有且只有1個(gè)B有且只有2個(gè)C有且只有3個(gè)D有無數(shù)個(gè)【考點(diǎn)】LO:空間中直線與直線之間的位置關(guān)系菁優(yōu)網(wǎng)版權(quán)所有【專題】16:壓軸題【分析】由于點(diǎn)D、B1顯然滿足要求,猜想B1
16、D上任一點(diǎn)都滿足要求,然后想辦法證明結(jié)論【解答】解:在正方體ABCDA1B1C1D1上建立如圖所示空間直角坐標(biāo)系,并設(shè)該正方體的棱長(zhǎng)為1,連接B1D,并在B1D上任取一點(diǎn)P,因?yàn)?(1,1,1),所以設(shè)P(a,a,a),其中0a1作PE平面A1D,垂足為E,再作EFA1D1,垂足為F,則PF是點(diǎn)P到直線A1D1的距離所以PF=;同理點(diǎn)P到直線AB、CC1的距離也是所以B1D上任一點(diǎn)與正方體ABCDA1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離都相等,所以與正方體ABCDA1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(diǎn)有無數(shù)個(gè)故選:D【點(diǎn)評(píng)】本題主要考查合情推理
17、的能力及空間中點(diǎn)到線的距離的求法12(5分)已知橢圓T:+=1(ab0)的離心率為,過右焦點(diǎn)F且斜率為k(k0)的直線與T相交于A,B兩點(diǎn),若=3,則k=()A1BCD2【考點(diǎn)】KH:直線與圓錐曲線的綜合菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;16:壓軸題【分析】設(shè)A(x1,y1),B(x2,y2),根據(jù)求得y1和y2關(guān)系根據(jù)離心率設(shè),b=t,代入橢圓方程與直線方程聯(lián)立,消去x,根據(jù)韋達(dá)定理表示出y1+y2和y1y2,進(jìn)而根據(jù)y1和y2關(guān)系求得k【解答】解:A(x1,y1),B(x2,y2),y1=3y2,設(shè),b=t,x2+4y24t2=0,設(shè)直線AB方程為,代入中消去x,可得,解得,故選:B【點(diǎn)
18、評(píng)】本題主要考查了直線與圓錐曲線的綜合問題此類題問題綜合性強(qiáng),要求考生有較高地轉(zhuǎn)化數(shù)學(xué)思想的運(yùn)用能力,能將已知條件轉(zhuǎn)化到基本知識(shí)的運(yùn)用二、填空題(共4小題,每小題5分,滿分20分)13(5分)已知是第二象限的角,tan=,則cos=【考點(diǎn)】GG:同角三角函數(shù)間的基本關(guān)系菁優(yōu)網(wǎng)版權(quán)所有【分析】根據(jù),以及sin2+cos2=1可求出答案【解答】解:=,2sin=cos又sin2+cos2=1,是第二象限的角故答案為:【點(diǎn)評(píng)】本題考查了同角三角函數(shù)的基礎(chǔ)知識(shí)14(5分)(x+)9展開式中x3的系數(shù)是84(用數(shù)字作答)【考點(diǎn)】DA:二項(xiàng)式定理菁優(yōu)網(wǎng)版權(quán)所有【分析】本題考查二項(xiàng)式定理的展開式,解題時(shí)需要
19、先寫出二項(xiàng)式定理的通項(xiàng)Tr+1,因?yàn)轭}目要求展開式中x3的系數(shù),所以只要使x的指數(shù)等于3就可以,用通項(xiàng)可以解決二項(xiàng)式定理的一大部分題目【解答】解:寫出(x+)9通項(xiàng),要求展開式中x3的系數(shù)令92r=3得r=3,C93=84故答案為:84【點(diǎn)評(píng)】本題是一個(gè)二項(xiàng)展開式的特定項(xiàng)的求法解本題時(shí)容易公式記不清楚導(dǎo)致計(jì)算錯(cuò)誤,所以牢記公式它是經(jīng)常出現(xiàn)的一個(gè)客觀題15(5分)已知拋物線C:y2=2px(p0)的準(zhǔn)線l,過M(1,0)且斜率為的直線與l相交于A,與C的一個(gè)交點(diǎn)為B,若,則p=2【考點(diǎn)】K8:拋物線的性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;16:壓軸題【分析】設(shè)直線AB的方程與拋物線方程聯(lián)立消去
20、y得3x2+(62p)x+3=0,進(jìn)而根據(jù),可知M為A、B的中點(diǎn),可得p的關(guān)系式,解方程即可求得p【解答】解:設(shè)直線AB:,代入y2=2px得3x2+(62p)x+3=0,又,即M為A、B的中點(diǎn),xB+()=2,即xB=2+,得p2+4P12=0,解得p=2,p=6(舍去)故答案為:2【點(diǎn)評(píng)】本題考查了拋物線的幾何性質(zhì)屬基礎(chǔ)題16(5分)已知球O的半徑為4,圓M與圓N為該球的兩個(gè)小圓,AB為圓M與圓N的公共弦,AB=4,若OM=ON=3,則兩圓圓心的距離MN=3【考點(diǎn)】JE:直線和圓的方程的應(yīng)用;ND:球的性質(zhì)菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;16:壓軸題【分析】根據(jù)題意畫出圖形,欲求兩圓圓
21、心的距離,將它放在與球心組成的三角形MNO中,只要求出球心角即可,通過球的性質(zhì)構(gòu)成的直角三角形即可解得【解答】解法一:ON=3,球半徑為4,小圓N的半徑為,小圓N中弦長(zhǎng)AB=4,作NE垂直于AB,NE=,同理可得,在直角三角形ONE中,NE=,ON=3,MN=3故填:3解法二:如下圖:設(shè)AB的中點(diǎn)為C,則OC與MN必相交于MN中點(diǎn)為E,因?yàn)镺M=ON=3,故小圓半徑NB為C為AB中點(diǎn),故CB=2;所以NC=,ONC為直角三角形,NE為ONC斜邊上的高,OC=MN=2EN=2CN=2××=3故填:3【點(diǎn)評(píng)】本題主要考查了點(diǎn)、線、面間的距離計(jì)算,還考查球、直線與圓的基礎(chǔ)知識(shí),考
22、查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題三、解答題(共6小題,滿分70分)17(10分)ABC中,D為邊BC上的一點(diǎn),BD=33,sinB=,cosADC=,求AD【考點(diǎn)】GG:同角三角函數(shù)間的基本關(guān)系;HP:正弦定理菁優(yōu)網(wǎng)版權(quán)所有【分析】先由cosADC=確定角ADC的范圍,因?yàn)锽AD=ADCB所以可求其正弦值,最后由正弦定理可得答案【解答】解:由cosADC=0,則ADC,又由知BADC可得B,由sinB=,可得cosB=,又由cosADC=,可得sinADC=從而sinBAD=sin(ADCB)=sinADCcosBcosADCsinB=由正弦定理得,所以AD=【點(diǎn)評(píng)】三角函數(shù)
23、與解三角形的綜合性問題,是近幾年高考的熱點(diǎn),在高考試題中頻繁出現(xiàn)這類題型難度比較低,一般出現(xiàn)在17或18題,屬于送分題,估計(jì)以后這類題型仍會(huì)保留,不會(huì)有太大改變解決此類問題,要根據(jù)已知條件,靈活運(yùn)用正弦定理或余弦定理,求邊角或?qū)⑦吔腔セ?8(12分)已知an是各項(xiàng)均為正數(shù)的等比數(shù)列a1+a2=2(),a3+a4+a5=64+)()求an的通項(xiàng)公式;()設(shè)bn=(an+)2,求數(shù)列bn的前n項(xiàng)和Tn【考點(diǎn)】88:等比數(shù)列的通項(xiàng)公式;8E:數(shù)列的求和菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題【分析】(1)由題意利用等比數(shù)列的通項(xiàng)公式建立首項(xiàng)a1與公比q的方程,然后求解即可(2)由bn的定義求出通項(xiàng)公式,在
24、由通項(xiàng)公式,利用分組求和法即可求解【解答】解:(1)設(shè)正等比數(shù)列an首項(xiàng)為a1,公比為q,由題意得:an=2n1(6分)(2)bn的前n項(xiàng)和Tn=(12分)【點(diǎn)評(píng)】(1)此問重基礎(chǔ)及學(xué)生的基本運(yùn)算技能(2)此處重點(diǎn)考查了高考常考的數(shù)列求和方法之一的分組求和,及指數(shù)的基本運(yùn)算性質(zhì)19(12分)如圖,直三棱柱ABCA1B1C1中,AC=BC,AA1=AB,D為BB1的中點(diǎn),E為AB1上的一點(diǎn),AE=3EB1()證明:DE為異面直線AB1與CD的公垂線;()設(shè)異面直線AB1與CD的夾角為45°,求二面角A1AC1B1的大小【考點(diǎn)】LM:異面直線及其所成的角;LQ:平面與平面之間的位置關(guān)系菁
25、優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題;14:證明題【分析】(1)欲證DE為異面直線AB1與CD的公垂線,即證DE與異面直線AB1與CD垂直相交即可;(2)將AB1平移到DG,故CDG為異面直線AB1與CD的夾角,作HKAC1,K為垂足,連接B1K,由三垂線定理,得B1KAC1,因此B1KH為二面角A1AC1B1的平面角,在三角形B1KH中求出此角即可【解答】解:(1)連接A1B,記A1B與AB1的交點(diǎn)為F因?yàn)槊鍭A1BB1為正方形,故A1BAB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D為BB1的中點(diǎn),故DEBF,DEAB1作CGAB,G為垂足,由AC=BC知,G為AB中點(diǎn)又由底面
26、ABC面AA1B1B連接DG,則DGAB1,故DEDG,由三垂線定理,得DECD所以DE為異面直線AB1與CD的公垂線(2)因?yàn)镈GAB1,故CDG為異面直線AB1與CD的夾角,CDG=45°設(shè)AB=2,則AB1=,DG=,CG=,AC=作B1HA1C1,H為垂足,因?yàn)榈酌鍭1B1C1面AA1CC1,故B1H面AA1C1C又作HKAC1,K為垂足,連接B1K,由三垂線定理,得B1KAC1,因此B1KH為二面角A1AC1B1的平面角B1H=,C1H=,AC1=,HK=tanB1KH=,二面角A1AC1B1的大小為arctan【點(diǎn)評(píng)】本試題主要考查空間的線面關(guān)系與空間角的求解,考查考生的
27、空間想象與推理計(jì)算的能力三垂線定理是立體幾何的最重要定理之一,是高考的熱點(diǎn),它是處理線線垂直問題的有效方法,同時(shí)它也是確定二面角的平面角的主要手段通過引入空間向量,用向量代數(shù)形式來處理立體幾何問題,淡化了傳統(tǒng)幾何中的“形”到“形”的推理方法,從而降低了思維難度,使解題變得程序化,這是用向量解立體幾何問題的獨(dú)到之處20(12分)如圖,由M到N的電路中有4個(gè)元件,分別標(biāo)為T1,T2,T3,T4,電流能通過T1,T2,T3的概率都是P,電流能通過T4的概率是0.9,電流能否通過各元件相互獨(dú)立已知T1,T2,T3中至少有一個(gè)能通過電流的概率為0.999()求P;()求電流能在M與N之間通過的概率【考點(diǎn)
28、】C5:互斥事件的概率加法公式;C8:相互獨(dú)立事件和相互獨(dú)立事件的概率乘法公式菁優(yōu)網(wǎng)版權(quán)所有【專題】11:計(jì)算題【分析】(1)設(shè)出基本事件,將要求事件用基本事件的來表示,將T1,T2,T3至少有一個(gè)能通過電流用基本事件表示并求出概率即可求得p()根據(jù)題意,B表示事件:電流能在M與N之間通過,根據(jù)電路圖,可得B=A4+(1A4)A1A3+(1A4)(1A1)A2A3,由互斥事件的概率公式,代入數(shù)據(jù)計(jì)算可得答案【解答】解:()根據(jù)題意,記電流能通過Ti為事件Ai,i=1、2、3、4,A表示事件:T1,T2,T3,中至少有一個(gè)能通過電流,易得A1,A2,A3相互獨(dú)立,且,P()=(1p)3=10.9
29、99=0.001,計(jì)算可得,p=0.9;()根據(jù)題意,B表示事件:電流能在M與N之間通過,有B=A4+(1A4)A1A3+(1A4)(1A1)A2A3,則P(B)=P(A4+(1A4)A1A3+(1A4)(1A1)A2A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891【點(diǎn)評(píng)】本題考查了概率中的互斥事件、對(duì)立事件及獨(dú)立事件的概率,注意先明確事件之間的關(guān)系,進(jìn)而選擇對(duì)應(yīng)的公式來計(jì)算21(12分)已知函數(shù)f(x)=x2+ax+1lnx()當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;()若f(x)在區(qū)間(0,)上是減函數(shù),求實(shí)數(shù)a的取值范圍【考點(diǎn)】3D:函數(shù)的單調(diào)性及單調(diào)區(qū)間;3E:函數(shù)單調(diào)性的性質(zhì)與判斷菁優(yōu)網(wǎng)版權(quán)所有【專題】16:壓軸題【分析】(1)求單調(diào)區(qū)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025廣東建筑安全員知識(shí)題庫附答案
- 貴州財(cái)經(jīng)職業(yè)學(xué)院《現(xiàn)代西方哲學(xué)專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 蠶豆產(chǎn)業(yè)基地建設(shè)項(xiàng)目可行性研究報(bào)告-蠶豆市場(chǎng)需求持續(xù)擴(kuò)大
- 貴陽康養(yǎng)職業(yè)大學(xué)《醫(yī)療健康商務(wù)溝通》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州中醫(yī)藥大學(xué)《生物統(tǒng)計(jì)附試驗(yàn)設(shè)計(jì)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年-吉林省安全員知識(shí)題庫附答案
- 廣州現(xiàn)代信息工程職業(yè)技術(shù)學(xué)院《心理咨詢與心理輔導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年-河北省安全員B證考試題庫
- 2025建筑安全員A證考試題庫
- 2025年山西省建筑安全員-C證考試(專職安全員)題庫及答案
- 展會(huì)活動(dòng)防疫工作方案
- 體育訓(xùn)練服務(wù)行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 肝性腦病的護(hù)理課件-
- 2024年銀行考試-支付清算系統(tǒng)參與者考試近5年真題附答案
- 2024年丟失物品索償協(xié)議書模板
- 2025年八省聯(lián)考新高考 語文試卷
- 建筑物拆除場(chǎng)地清理垃圾外運(yùn)施工方案
- 網(wǎng)絡(luò)信息安全知識(shí)考試參考題庫300題(含各題型)
- 內(nèi)部調(diào)查與舉報(bào)制度
- 《賣火柴的小女孩》公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)(共兩課時(shí))
- 山東省東營(yíng)市(2024年-2025年小學(xué)四年級(jí)語文)統(tǒng)編版期末考試(上學(xué)期)試卷及答案
評(píng)論
0/150
提交評(píng)論