全等三角形中做輔助線總結(jié)_第1頁
全等三角形中做輔助線總結(jié)_第2頁
全等三角形中做輔助線總結(jié)_第3頁
全等三角形中做輔助線總結(jié)_第4頁
全等三角形中做輔助線總結(jié)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、全等三角形中做輔助線技巧要點大匯總口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。1、 由角平分線想到的輔助線 口訣:圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點到角兩邊的距離相等。對于有角平分線的輔助線的作法,

2、一般有兩種。從角平分線上一點向兩邊作垂線;利用角平分線,構(gòu)造對稱圖形(如作法是在一側(cè)的長邊上截取短邊)。通常情況下,出現(xiàn)了直角或是垂直等條件時,一般考慮作垂線;其它情況下考慮構(gòu)造對稱圖形。至于選取哪種方法,要結(jié)合題目圖形和已知條件。與角有關(guān)的輔助線(一)、截取構(gòu)全等如圖1-1,AOC=BOC,如取OE=OF,并連接DE、DF,則有OEDOFD,從而為我們證明線段、角相等創(chuàng)造了條件。例1 如圖1-2,AB/CD,BE平分BCD,CE平分BCD,點E在AD上,求證:BC=AB+CD。例2 已知:如圖1-3,AB=2AC,BAD=CAD,DA=DB,求證DCAC例3 已知:如圖1-4,在ABC中,C

3、=2B,AD平分BAC,求證:AB-AC=CD分析:此題的條件中還有角的平分線,在證明中還要用到構(gòu)造全等三角形,此題還是證明線段的和差倍分問題。用到的是截取法來證明的,在長的線段上截取短的線段,來證明。試試看可否把短的延長來證明呢?練習(xí)1 已知在ABC中,AD平分BAC,B=2C,求證:AB+BD=AC2 已知:在ABC中,CAB=2B,AE平分CAB交BC于E,AB=2AC,求證:AE=2CE3 已知:在ABC中,AB>AC,AD為BAC的平分線,M為AD上任一點。求證:BM-CM>AB-AC4 已知:D是ABC的BAC的外角的平分線AD上的任一點,連接DB、DC。求證:BD+C

4、D>AB+AC。(二)、角分線上點向角兩邊作垂線構(gòu)全等過角平分線上一點向角兩邊作垂線,利用角平分線上的點到兩邊距離相等的性質(zhì)來證明問題。例1 如圖2-1,已知AB>AD, BAC=FAC,CD=BC。求證:ADC+B=180 分析:可由C向BAD的兩邊作垂線。近而證ADC與B之和為平角。例2 如圖2-2,在ABC中,A=90 ,AB=AC,ABD=CBD。求證:BC=AB+AD分析:過D作DEBC于E,則AD=DE=CE,則構(gòu)造出全等三角形,從而得證。此題是證明線段的和差倍分問題,從中利用了相當(dāng)于截取的方法。例3 已知如圖2-3,ABC的角平分線BM、CN相交于

5、點P。求證:BAC的平分線也經(jīng)過點P。分析:連接AP,證AP平分BAC即可,也就是證P到AB、AC的距離相等。練習(xí):1如圖2-4AOP=BOP=15 ,PC/OA,PDOA, 如果PC=4,則PD=( ) A 4 B 3 C 2 D 12已知在ABC中,C=90 ,AD平分CAB,CD=1.5,DB=2.5.求AC。3已知:如圖2-5, BAC=CAD,AB>AD,CEAB,AE=(AB+AD).求證:D+B=180 。4.已知:如圖2-6,在正方形ABCD中,E為CD 的中點,F(xiàn)為BC 上的點,F(xiàn)AE=DAE。求證:AF=AD+CF。5 已知:如圖2-7,

6、在RtABC中,ACB=90 ,CDAB,垂足為D,AE平分CAB交CD于F,過F作FH/AB交BC于H。求證CF=BH。(三):作角平分線的垂線構(gòu)造等腰三角形從角的一邊上的一點作角平分線的垂線,使之與角的兩邊相交,則截得一個等腰三角形,垂足為底邊上的中點,該角平分線又成為底邊上的中線和高,以利用中位線的性質(zhì)與等腰三角形的三線合一的性質(zhì)。(如果題目中有垂直于角平分線的線段,則延長該線段與角的另一邊相交)。例1 已知:如圖3-1,BAD=DAC,AB>AC,CDAD于D,H是BC中點。求證:DH=(AB-AC)分析:延長CD交AB于點E,則可得全等三角形。問題可證。例2 已知:如

7、圖3-2,AB=AC,BAC=90 ,AD為ABC的平分線,CEBE.求證:BD=2CE。例3已知:如圖3-3在ABC中,AD、AE分別BAC的內(nèi)、外角平分線,過頂點B作BFAD,交AD的延長線于F,連結(jié)FC并延長交AE于M。求證:AM=ME。分析:由AD、AE是BAC內(nèi)外角平分線,可得EAAF,從而有BF/AE,所以想到利用比例線段證相等。例4 已知:如圖3-4,在ABC中,AD平分BAC,AD=AB,CMAD交AD延長線于M。求證:AM=(AB+AC)分析:題設(shè)中給出了角平分線AD,自然想到以AD為軸作對稱變換,作ABD關(guān)于AD的對稱AED,然后只需證DM=EC,另外由求證的結(jié)果

8、AM=(AB+AC),即2AM=AB+AC,也可嘗試作ACM關(guān)于CM的對稱FCM,然后只需證DF=CF即可。練習(xí):1 已知:在ABC中,AB=5,AC=3,D是BC中點,AE是BAC的平分線,且CEAE于E,連接DE,求DE。2 已知BE、BF分別是ABC的ABC的內(nèi)角與外角的平分線,AFBF于F,AEBE于E,連接EF分別交AB、AC于M、N,求證MN=BC(四)、以角分線上一點做角的另一邊的平行線有角平分線時,常過角平分線上的一點作角的一邊的平行線,從而構(gòu)造等腰三角形?;蛲ㄟ^一邊上的點作角平分線的平行線與另外一邊的反向延長線相交,從而也構(gòu)造等腰三角形。如圖4-1和圖4-2所示。12ACDB

9、例4 如圖,AB>AC, 1=2,求證:ABAC>BDCD。例5 如圖,BC>BA,BD平分ABC,且AD=CD,求證:A+C=180。BDCAABECD例6 如圖,ABCD,AE、DE分別平分BAD各ADE,求證:AD=AB+CD。練習(xí):1. 已知,如圖,C=2A,AC=2BC。求證:ABC是直角三角形。CAB2已知:如圖,AB=2AC,1=2,DA=DB,求證:DCACABDC12 3已知CE、AD是ABC的角平分線,B=60°,求證:AC=AE+CDAEBDC4已知:如圖在ABC中,A=90°,AB=AC,BD是ABC的平分線,求證:BC=AB+AD

10、ABCD二、 由線段和差想到的輔助線口訣:線段和差及倍半,延長縮短可試驗。線段和差不等式,移到同一三角去。遇到求證一條線段等于另兩條線段之和時,一般方法是截長補短法:1、截長:在長線段中截取一段等于另兩條中的一條,然后證明剩下部分等于另一條;2、補短:將一條短線段延長,延長部分等于另一條短線段,然后證明新線段等于長線段。對于證明有關(guān)線段和差的不等式,通常會聯(lián)系到三角形中兩線段之和大于第三邊、之差小于第三邊,故可想辦法放在一個三角形中證明。一、 在利用三角形三邊關(guān)系證明線段不等關(guān)系時,如直接證不出來,可連接兩點或廷長某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個或幾個三角形中,再運用三角形三邊的不等關(guān)

11、系證明,如:例1、 已知如圖1-1:D、E為ABC內(nèi)兩點,求證:AB+AC>BD+DE+CE.證明:(法一)將DE兩邊延長分別交AB、AC于M、N,在AMN中,AM+AN>MD+DE+NE;(1)在BDM中,MB+MD>BD;(2)在CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CEAB+AC>BD+DE+EC(法二:圖1-2)延長BD交AC于F,廷長CE交BF于G,在ABF和GFC和GDE中有:AB+AF>BD+DG+GF(三角形兩邊之和大于第三邊)(1)GF+FC>G

12、E+CE(同上)(2)DG+GE>DE(同上)(3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DEAB+AC>BD+DE+EC。二、 在利用三角形的外角大于任何和它不相鄰的內(nèi)角時如直接證不出來時,可連接兩點或延長某邊,構(gòu)造三角形,使求證的大角在某個三角形的外角的位置上,小角處于這個三角形的內(nèi)角位置上,再利用外角定理:例如:如圖2-1:已知D為ABC內(nèi)的任一點,求證:BDC>BAC。分析:因為BDC與BAC不在同個三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使BDC處于在外角的位置,BAC處于在內(nèi)角的位置;

13、證法一:延長BD交AC于點E,這時BDC是EDC的外角,BDC>DEC,同理DEC>BAC,BDC>BAC證法二:連接AD,并廷長交BC于F,這時BDF是ABD的外角,BDF>BAD,同理,CDF>CAD,BDF+CDF>BAD+CAD,即:BDC>BAC。注意:利用三角形外角定理證明不等關(guān)系時,通常將大角放在某三角形的外角位置上,小角放在這個三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。三、 有角平分線時,通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖3-1:已知AD為ABC的中線,且1=2,3=4,求證:BE+CF>EF。分析:要證

14、BE+CF>EF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個三角形中,而由已知1=2,3=4,可在角的兩邊截取相等的線段,利用三角形全等對應(yīng)邊相等,把EN,F(xiàn)N,EF移到同個三角形中。證明:在DN上截取DN=DB,連接NE,NF,則DN=DC,在DBE和NDE中:DN=DB(輔助線作法)1=2(已知)ED=ED(公共邊)DBENDE(SAS)BE=NE(全等三角形對應(yīng)邊相等)同理可得:CF=NF在EFN中EN+FN>EF(三角形兩邊之和大于第三邊)BE+CF>EF。注意:當(dāng)證題有角平分線時,??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的

15、對應(yīng)性質(zhì)得到相等元素。三、截長補短法作輔助線。例如:已知如圖6-1:在ABC中,AB>AC,1=2,P為AD上任一點求證:AB-AC>PB-PC。分析:要證:AB-AC>PB-PC,想到利用三角形三邊關(guān)系,定理證之,因為欲證的線段之差,故用兩邊之差小于第三邊,從而想到構(gòu)造第三邊AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再連接PN,則PC=PN,又在PNB中,PB-PN<BN,即:AB-AC>PB-PC。證明:(截長法)在AB上截取AN=AC連接PN,在APN和APC中AN=AC(輔助線作法)1=2(已知)AP=AP(公共邊)APNAPC(SAS

16、),PC=PN(全等三角形對應(yīng)邊相等)在BPN中,有PB-PN<BN(三角形兩邊之差小于第三邊)BP-PC<AB-AC證明:(補短法)延長AC至M,使AM=AB,連接PM,在ABP和AMP中AB=AM(輔助線作法)1=2(已知)AP=AP(公共邊)ABPAMP(SAS)PB=PM(全等三角形對應(yīng)邊相等)又在PCM中有:CM>PM-PC(三角形兩邊之差小于第三邊)AB-AC>PB-PC。DAECB例1如圖,AC平分BAD,CEAB,且B+D=180°,求證:AE=AD+BE。例2如圖,在四邊形ABCD中,AC平分BAD,CEAB于E,AD+AB=2AE,求證:A

17、DC+B=180º例3已知:如圖,等腰三角形ABC中,AB=AC,A=108°,BD平分ABC。DCBA求證:BC=AB+DC。MBDCA例4如圖,已知RtABC中,ACB=90°,AD是CAB的平分線,DMAB于M,且AM=MB。求證:CD=DB?!竞粚嵒A(chǔ)】例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DEAB于E,作DFAC于F,證明二次全等方法2:輔助線同上,利用面積方法3:倍長中線AD【方法精講】常用輔助線添加方法倍長中線ABC中 方式1: 延長AD到E, AD是BC邊中線 使DE=AD, 連接BE 方式2:間接倍長 作CFAD于F, 延

18、長MD到N, 作BEAD的延長線于E 使DN=MD,連接BE 連接CD【經(jīng)典例題】例1:ABC中,AB=5,AC=3,求中線AD的取值范圍提示:畫出圖形,倍長中線AD,利用三角形兩邊之和大于第三邊例2:已知在ABC中,AB=AC,D在AB上,E在AC的延長線上,DE交BC于F,且DF=EF,求證:BD=CE方法1:過D作DGAE交BC于G,證明DGFCEF方法2:過E作EGAB交BC的延長線于G,證明EFGDFB方法3:過D作DGBC于G,過E作EHBC的延長線于H 證明BDGECH例3:已知在ABC中,AD是BC邊上的中線,E是AD上一點,且BE=AC,延長BE交AC于F,求證:AF=EF提

19、示:倍長AD至G,連接BG,證明BDGCDA 三角形BEG是等腰三角形例4:已知:如圖,在中,D、E在BC上,且DE=EC,過D作交AE于點F,DF=AC.求證:AE平分提示:方法1:倍長AE至G,連結(jié)DG方法2:倍長FE至H,連結(jié)CH例5:已知CD=AB,BDA=BAD,AE是ABD的中線,求證:C=BAE提示:倍長AE至F,連結(jié)DF 證明ABEFDE(SAS)進(jìn)而證明ADFADC(SAS)【融會貫通】1、在四邊形ABCD中,ABDC,E為BC邊的中點,BAE=EAF,AF與DC的延長線相交于點F。試探究線段AB與AF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論提示:延長AE、DF交于G 證明AB=

20、GC、AF=GF 所以AB=AF+FC2、如圖,AD為的中線,DE平分交AB于E,DF平分交AC于F. 求證:提示:方法1:在DA上截取DG=BD,連結(jié)EG、FG 證明BDEGDE DCFDGF 所以BE=EG、CF=FG 利用三角形兩邊之和大于第三邊方法2:倍長ED至H,連結(jié)CH、FH 證明FH=EF、CH=BE 利用三角形兩邊之和大于第三邊3、已知:如圖,DABC中,ÐC=90°,CMAB于M,AT平分ÐBAC交CM于D,交BC于T,過D作DE/AB交BC于E,求證:CT=BE.提示:過T作TNAB于N 證明BTNECD1如圖,ABCD,AE、DE分別平分BA

21、D各ADE,求證:AD=AB+CD。EDCBA2.如圖,ABC中,BAC=90°,AB=AC,AE是過A的一條直線,且B,C在AE的異側(cè),BDAE于D,CEAE于E。求證:BD=DE+CE四、 由中點想到的輔助線 口訣:三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。在三角形中,如果已知一點是三角形某一邊上的中點,那么首先應(yīng)該聯(lián)想到三角形的中線、中位線、加倍延長中線及其相關(guān)性質(zhì)(直角三角形斜邊中線性質(zhì)、等腰三角形底邊中線性質(zhì)),然后通過探索,找到解決問題的方法。(一)、中線把原三角形分成兩個面積相等的小三角形即如圖1,AD是ABC的中線,則SABD=SACD=SABC

22、(因為ABD與ACD是等底同高的)。例1如圖2,ABC中,AD是中線,延長AD到E,使DE=AD,DF是DCE的中線。已知ABC的面積為2,求:CDF的面積。解:因為AD是ABC的中線,所以SACD=SABC=×2=1,又因CD是ACE的中線,故SCDE=SACD=1,因DF是CDE的中線,所以SCDF=SCDE=×1=。CDF的面積為。(二)、由中點應(yīng)想到利用三角形的中位線例2如圖3,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點,BA、CD的延長線分別交EF的延長線G、H。求證:BGE=CHE。證明:連結(jié)BD,并取BD的中點為M,連結(jié)ME、MF,ME是BC

23、D的中位線,MECD,MEF=CHE,MF是ABD的中位線,MFAB,MFE=BGE,AB=CD,ME=MF,MEF=MFE,從而BGE=CHE。(三)、由中線應(yīng)想到延長中線例3圖4,已知ABC中,AB=5,AC=3,連BC上的中線AD=2,求BC的長。解:延長AD到E,使DE=AD,則AE=2AD=2×2=4。在ACD和EBD中,AD=ED,ADC=EDB,CD=BD,ACDEBD,AC=BE,從而BE=AC=3。在ABE中,因AE2+BE2=42+32=25=AB2,故E=90°,BD=,故BC=2BD=2。例4如圖5,已知ABC中,AD是BAC的平分線,AD又是BC邊

24、上的中線。求證:ABC是等腰三角形。證明:延長AD到E,使DE=AD。仿例3可證:BEDCAD,故EB=AC,E=2,又1=2,1=E,AB=EB,從而AB=AC,即ABC是等腰三角形。(四)、直角三角形斜邊中線的性質(zhì)例5如圖6,已知梯形ABCD中,AB/DC,ACBC,ADBD,求證:AC=BD。證明:取AB的中點E,連結(jié)DE、CE,則DE、CE分別為RtABD,RtABC斜邊AB上的中線,故DE=CE=AB,因此CDE=DCE。AB/DC,CDE=1,DCE=2,1=2,在ADE和BCE中,DE=CE,1=2,AE=BE,ADEBCE,AD=BC,從而梯形ABCD是等腰梯形,因此AC=BD

25、。(五)、角平分線且垂直一線段,應(yīng)想到等腰三角形的中線例6如圖7,ABC是等腰直角三角形,BAC=90°,BD平分ABC交AC于點D,CE垂直于BD,交BD的延長線于點E。求證:BD=2CE。證明:延長BA,CE交于點F,在BEF和BEC中,1=2,BE=BE,BEF=BEC=90°,BEFBEC,EF=EC,從而CF=2CE。又1+F=3+F=90°,故1=3。在ABD和ACF中,1=3,AB=AC,BAD=CAF=90°,ABDACF,BD=CF,BD=2CE。注:此例中BE是等腰BCF的底邊CF的中線。(六)中線延長口訣:三角形中有中線,延長中線等

26、中線。題目中如果出現(xiàn)了三角形的中線,常延長加倍此線段,再將端點連結(jié),便可得到全等三角形。例一:如圖4-1:AD為ABC的中線,且1=2,3=4,求證:BE+CF>EF。證明:廷長ED至M,使DM=DE,連接CM,MF。在BDE和CDM中,BD=CD(中點定義)1=5(對頂角相等)ED=MD(輔助線作法)BDECDM(SAS)又1=2,3=4(已知)1+2+3+4=180°(平角的定義)3+2=90°即:EDF=90°FDM=EDF=90°在EDF和MDF中ED=MD(輔助線作法)EDF=FDM(已證)DF=DF(公共邊)EDFMDF(SAS)EF=

27、MF(全等三角形對應(yīng)邊相等)在CMF中,CF+CM>MF(三角形兩邊之和大于第三邊)BE+CF>EF上題也可加倍FD,證法同上。注意:當(dāng)涉及到有以線段中點為端點的線段時,可通過延長加倍此線段,構(gòu)造全等三角形,使題中分散的條件集中。例二:如圖5-1:AD為ABC的中線,求證:AB+AC>2AD。分析:要證AB+AC>2AD,由圖想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左邊比要證結(jié)論多BD+CD,故不能直接證出此題,而由2AD想到要構(gòu)造2AD,即加倍中線,把所要證的線段轉(zhuǎn)移到同一個三角形中去證明:延長AD

28、至E,使DE=AD,連接BE,CEAD為ABC的中線(已知)BD=CD(中線定義)在ACD和EBD中BD=CD(已證)1=2(對頂角相等)AD=ED(輔助線作法)ACDEBD(SAS)BE=CA(全等三角形對應(yīng)邊相等)在ABE中有:AB+BE>AE(三角形兩邊之和大于第三邊)AB+AC>2AD。練習(xí):1 如圖,AB=6,AC=8,D為BC 的中點,求AD的取值范圍。BADC862 如圖,AB=CD,E為BC的中點,BAC=BCA,求證:AD=2AE。BECDA 3 如圖,AB=AC,AD=AE,M為BE中點,BAC=DAE=90°。求證:AMDC。DMCDEDADBD4,

29、已知ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向外作等腰直角三角形,如圖5-2,求證EF=2AD。ABDCEF5已知:如圖AD為ABC的中線,AE=EF,求證:BF=AC 常見輔助線的作法有以下幾種:1) 遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”2) 遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”3) 遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質(zhì)定理或逆定理4) 過圖形上某一點作特定

30、的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”5) 截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明這種作法,適合于證明線段的和、差、倍、分等類的題目特殊方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答(一)、倍長中線(線段)造全等1:(“希望杯”試題)已知,如圖ABC中,AB=5,AC=3,則中線AD的取值范圍是_.2:如圖,ABC中,E、F分別在AB、AC上,DEDF,D是中點,試比較BE+CF與EF的大小.3:如

31、圖,ABC中,BD=DC=AC,E是DC的中點,求證:AD平分BAE.中考應(yīng)用(09崇文二模)以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系(1)如圖 當(dāng)為直角三角形時,AM與DE的位置關(guān)系是 ,線段AM與DE的數(shù)量關(guān)系是 ;(2)將圖中的等腰Rt繞點A沿逆時針方向旋轉(zhuǎn)(0<<90)后,如圖所示,(1)問中得到的兩個結(jié)論是否發(fā)生改變?并說明理由(二)、截長補短1.如圖,中,AB=2AC,AD平分,且AD=BD,求證:CDAC2:如圖,ACBD,EA,EB分別平分CAB,DBA,CD過點E,求證;ABAC

32、+BD3:如圖,已知在內(nèi),P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP4:如圖,在四邊形ABCD中,BCBA,ADCD,BD平分,求證:5:如圖在ABC中,ABAC,12,P為AD上任意一點,求證;AB-ACPB-PC中考應(yīng)用(08海淀一模)例題講解:一、利用轉(zhuǎn)化倍角,構(gòu)造等腰三角形當(dāng)一個三角形中出現(xiàn)一個角是另一個角的2倍時,我們就可以通過轉(zhuǎn)化倍角尋找到等腰三角形.如圖中,若ABC2C,如果作BD平分ABC,則DBC是等腰三角形;如圖中,若ABC2C,如果延長線CB到D,使BDBA,連結(jié)AD,則ADC是等腰三角形;BCDABCDABCDA如圖中,若B

33、2ACB,如果以C為角的頂點,CA為角的一邊,在形外作ACDACB,交BA的延長線于點D,則DBC是等腰三角形.DCBA1、如圖,ABC中,ABAC,BDAC交AC于D.求證:DBCBAC.ABC2、如圖,ABC中,ACB2B,BC2AC.求證:A90°.二、利用角平分線+平行線,構(gòu)造等腰三角形當(dāng)一個三角形中出現(xiàn)角平分線和平行線時,我們就可以尋找到等腰三角形.如圖中,若AD平分BAC,ADEC,則ACE是等腰三角形;如圖中,AD平分BAC,DEAC,則ADE是等腰三角形;如圖中,AD平分BAC,CEAB,則ACE是等腰三角形;ADCBEECBDABACDEABFCDEG如圖中,AD平

34、分BAC,EFAD,則AGE是等腰三角形.3、如圖,ABC中,ABAC,在AC上取點P,過點P作EFBC,交BA的延長線于點E,垂足為點F.求證:.AEAP.FBACPEFCDEBA4、如圖,ABC中,AD平分BAC,E、F分別在BD、AD上,且DECD,EFAC.求證:EFAB.E圖1ABCD三、利用角平分線+垂線,構(gòu)造等腰三角形當(dāng)一個三角形中出現(xiàn)角平分線和垂線時,我們就可以尋找到等腰三角形.如圖1中,若AD平分BAC,ADDC,則AEC是等腰三角形.5、如圖2,已知等腰RtABC中,ABAC,BAC90°,BF平分ABC,CDBD交BF的延長線于D。求證: BF2CD.圖2BFD

35、CA四:其他方法總結(jié)1截長補短法ABCDE6、如圖,已知:正方形ABCD中,BAC的平分線交BC于E,求證:AB+BE=AC2倍長中線法題中條件若有中線,可延長一倍,以構(gòu)造全等三角形,從而將分散條件集中在一個三角形內(nèi)。EABCDF 7、如圖(7)AD是ABC的中線,BE交AC于E,交AD于F,且AE=EF求證:AC=BFAE8、已知ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向外作等腰直角三角形,如圖,求證EF2AD。 FBCD 3平行線法(或平移法) 若題設(shè)中含有中點可以試過中點作平行線或中位線,對Rt,有時可作出斜邊的中線ABCPQO9、ABC中,BAC=60°,C=40°AP平分BAC交BC于P,BQ平分ABC交AC于Q, 求證:AB+BP=BQ+AQOABCPQD圖(1)ABCP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論