![湘教版九年級(jí)下冊第二章圓教案_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/21/094786fa-d3b5-4b8f-9cd0-9e464cb130fa/094786fa-d3b5-4b8f-9cd0-9e464cb130fa1.gif)
![湘教版九年級(jí)下冊第二章圓教案_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/21/094786fa-d3b5-4b8f-9cd0-9e464cb130fa/094786fa-d3b5-4b8f-9cd0-9e464cb130fa2.gif)
![湘教版九年級(jí)下冊第二章圓教案_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/21/094786fa-d3b5-4b8f-9cd0-9e464cb130fa/094786fa-d3b5-4b8f-9cd0-9e464cb130fa3.gif)
![湘教版九年級(jí)下冊第二章圓教案_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/21/094786fa-d3b5-4b8f-9cd0-9e464cb130fa/094786fa-d3b5-4b8f-9cd0-9e464cb130fa4.gif)
![湘教版九年級(jí)下冊第二章圓教案_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/21/094786fa-d3b5-4b8f-9cd0-9e464cb130fa/094786fa-d3b5-4b8f-9cd0-9e464cb130fa5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、湘教版九年級(jí)下冊第2章圓教案第(14課時(shí))第一課時(shí)圓的對(duì)稱性學(xué)習(xí)目標(biāo):1、理解圓及弧、等弧、弦、等圓、半圓、直徑等有關(guān)概念的定義;2、理解圓既是軸對(duì)稱圖形又是中心對(duì)稱圖形.;3、掌握點(diǎn)與圓的位置關(guān)系及判定條件.教學(xué)重點(diǎn)、難點(diǎn):1、重點(diǎn):圓、等圓、弧、等弧、弦、半圓、直徑等有關(guān)概念的理解.2、難點(diǎn):圓、等圓、弧、等弧、弦、半圓、直徑等有關(guān)概念的區(qū)別與聯(lián)系教學(xué)過程:一、新課引入:1、創(chuàng)設(shè)情境、導(dǎo)入新課:圓是生活中常見的圖形,許多物體都給我們以圓的形象(1)觀察以上圖形,請大家說說生活中還有哪些圓形,讓學(xué)生體驗(yàn)圓的和諧與美麗.(2)活動(dòng):請同學(xué)們在草稿紙上用圓規(guī)畫圓,體驗(yàn)畫圓的過程,想想圓是怎樣形成
2、 的.二、新知探究:1、探究一:圓的定義(1)活動(dòng):如教材P43圖所示,用繩子和圓規(guī)畫圓;(2)思考:通過用繩子和圓規(guī)畫圓的過程, 你發(fā)現(xiàn)了什么由此你能得到什么結(jié) 論(3)凝煉結(jié)果:圓的定義及表示方法:如右圖:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)。旋轉(zhuǎn)一周,另一 個(gè)端點(diǎn)A所形成的圓形叫做圓.固定的端點(diǎn)。叫做圓心,線段OA叫做半徑.以點(diǎn)。為圓心的圓,記作O”,讀作“圓O” 注意:圓指的是圓周,不是圓面.2、探究二:點(diǎn)與圓的位置關(guān)系:(1)觀察:% P2、P3與。O的位置關(guān)系,你發(fā)現(xiàn)了點(diǎn)與圓的有哪幾種位置關(guān)系什么點(diǎn) P到圓心O的距離d與。O的半徑為r有何關(guān)系(2)結(jié)論:點(diǎn)與圓的位置關(guān)系及性質(zhì):
3、一般地,設(shè)。的半徑為r,點(diǎn)P到圓心。的距離為d,則有若點(diǎn)P在。內(nèi),則d<r;若點(diǎn)P在。上,則d=r;若點(diǎn)P在。外,則d>r。(3)點(diǎn)與圓的位置關(guān)系的判定方法:數(shù)形結(jié)合法;若d<r,則點(diǎn)P在。內(nèi);若d=r,則點(diǎn)P在。上;若d>r,則點(diǎn)P在。外。3.與圓有關(guān)的概念:(結(jié)合圖形理解)(1)弦:連接圓上任意兩點(diǎn)的線段叫做弦.(如:線段AB、AC)(2)直徑:經(jīng)過圓心的弦(如AB)叫做直徑.注:直徑是特殊的弦,但弦不一定是直徑.(3)弧的定義及分類:定義:圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧.如圖,以A、B為端點(diǎn)的弧記作,Ab,讀作:弧AB.分類:圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分
4、成兩條弧,每一條弧都叫做半圓.大于半圓的弧,用三個(gè)點(diǎn)表示,如圖中的Abc ,叫做優(yōu)弧.小于半圓的弧,用兩個(gè)點(diǎn)表示,如圖中的Ac,叫做劣弧.(4)等圓:能夠重合的兩個(gè)圓叫做等圓.注:半徑相等的兩個(gè)圓是等圓,反過來,同圓或等圓的半徑相等(5)等弧:在等圓或同圓中,能夠互相重合的弧叫等弧注:等弧是全等的,不僅是弧的長度相等.等弧只存在于同圓或等圓中.4、探究三:圓的對(duì)稱性(1)探究活動(dòng):通過教材P44探究1、2,引導(dǎo)學(xué)生仔細(xì)體會(huì),必要時(shí)可通過畫 圖或折疊圓心紙片演示.(2)凝煉結(jié)果:圓是中心對(duì)稱圖形,圓心是它的對(duì)稱中心.圓是軸對(duì)稱圖形,任意一條直徑所在的直線都是圓的對(duì)稱軸.(3)思考 車輪為什么做成
5、圓形的如果車輪不是圓的 (如橢圓或正方形等),坐車 人會(huì)是什么感覺分析:把車輪做成圓形,車輪上各點(diǎn)到車輪中心(圓心)的距離都等于車輪的半徑,當(dāng) 車輪在平面滾動(dòng)時(shí),車輪中心與平面的距離保持不變.因此,車輛在平路上行駛時(shí), 坐車的人會(huì)感到非常平穩(wěn).如果車輪不是圓的,車輛在行駛時(shí),坐車人會(huì)感覺到上 下顛簸,不舒服.三、自學(xué)成果展示:1.在RtABC中,/C=90° ,AB=3cm,BC=2cn點(diǎn)A為圓心,2cm長為半徑作圓, 則點(diǎn)C ( C )A.在OA內(nèi)B.在。A上C在OA外D.可能在。A上也可能在。A外2、(1)以點(diǎn)A為圓心,可以畫 個(gè)圓.(2)以已知線段AB的長為半徑,可以畫個(gè)圓.(
6、3)以A為圓心AB長為半徑,可以畫 _個(gè)圓.【參考答案】2.(1)無數(shù)(2)無數(shù)(3)10 13.如圖,半圓的直徑AB=.【參/考答案3.272W ()JC第3題圖第4題圖A 2B4.如圖,圖中共有 條弦.5、如圖,是兩個(gè)同心圓,其中兩條直徑互相垂直,大圓的半徑是 影部分的面積之和為(結(jié)果保留兀).四、課堂小結(jié):小組交流,共享受收獲的喜悅2,則其陰1、師生共同回顧圓的兩種定義,弦(直徑),?。ò雸A、優(yōu)弧、劣弧、等?。┑葓A等知識(shí)點(diǎn).2、通過這節(jié)課的學(xué)習(xí),你掌握了哪些新知識(shí),還有哪些疑問請與同伴交流五、課堂檢測:卜列圖形中,對(duì)稱軸最多的圖形是(A.線段民等邊三角形C正方形2.已知。的半徑是5,點(diǎn)A
7、到圓心。的距離是7,則點(diǎn)A與。的位置關(guān)系 是()A.點(diǎn)A在。上B.點(diǎn)A在。內(nèi)C點(diǎn)A在。外D點(diǎn)A與圓心。重合3、已知。的半徑為5,圓心。的坐標(biāo)為(0, 0),點(diǎn)P的坐標(biāo)為(3, 4),那么點(diǎn)P與。的位置關(guān)系是()A.點(diǎn)P在。內(nèi)B.點(diǎn)P在。上C.點(diǎn)P在。外D.無法確定4、下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()5、已知一點(diǎn)到圓的最小距離為1 cm,最大距離為3 cm,則圓的半徑為 ()A. 1 cmB. 2 cmC. 3 cmD. 1 cm或2 cm6、已知矩形ABCD的邊AB= 6, AD= 8.如果以點(diǎn)A為圓心作。A,使B、C、D三 點(diǎn)中在圓內(nèi)和在圓外都至少有一個(gè)點(diǎn),那么 OA的半徑
8、r的取值范圍是()A. 6<r<10B, 8<r<10C. 6<r<8D, 8<r< 107、如圖,。與。0'是任意兩個(gè)圓,把這兩個(gè)圓看作一個(gè)整體,它是一個(gè)軸對(duì)稱圖形,請你作出這個(gè)圖形的對(duì)稱軸.一8、如圖,。中,點(diǎn)A, O, D以及B, O, C分別都在同一條直線上.(1)圖中共有幾條弦請將它們寫出來;(2)請任意寫出兩條劣弧和兩條優(yōu)弧.六、課后作業(yè)1.布置作業(yè):從教材“習(xí)題2.1”中選取.拓展練習(xí):1、在4ABC中,/ C= 90° , AC= 4, AB= 5,以點(diǎn)C為圓心,以r = 3為半徑作 圓,判斷A, B兩點(diǎn)和。的位
9、置關(guān)2、由于過度采伐森林和破壞植被,我國某些地區(qū)多次受到沙塵暴的侵襲. 近日, A市氣象局測得沙塵暴中心在 A市正東方向400 km的B處,正在向西北方向轉(zhuǎn) 移,如圖,距沙塵暴中心300 km的范圍內(nèi)將受其影響,問A1北市是否會(huì)受到這次沙塵暴的影響4同七、教學(xué)反思:才 了 親第二課時(shí)圓心角、圓周角(第1課時(shí))2.2.1圓心角學(xué)習(xí)目標(biāo):1 .理解并掌握圓心角的概念.2 .掌握圓心角與弧及弦的關(guān)系定理.教學(xué)重點(diǎn)、難點(diǎn):1、重點(diǎn):弧、弦、圓心角之間關(guān)系的定理及推論和它們的應(yīng)用3 、難點(diǎn):探索定理和推論及其應(yīng)用.教學(xué)過程:一、新課引入4 、問題1:如圖中,時(shí)鐘的時(shí)針與分鐘所成的角與時(shí)鐘的外圍所成的圓有
10、哪些位置關(guān)系教師引導(dǎo):讓學(xué)生關(guān)鍵指出兩點(diǎn):一是角的頂點(diǎn)在圓心,二是兩邊與圓相交2、引入課題:2.2.1圓心角二、思考探究,獲取新知1.學(xué)生自學(xué)課文:P47,弄清:圓心角的定義(1)圓心角概念:頂點(diǎn)在圓心,角的兩邊與圓相交的角叫圓心角.如圖,/ AOB叫做AB所對(duì)的圓心角,AB叫做圓心角/ AOB所對(duì)的弧.注:圓心角的定義可以簡化為:頂點(diǎn)在圓心的角叫圓心角.2、探究:圓心角與弧、弦關(guān)系定理(1)探究1:請同學(xué)們按下列要求作圖并回答下列問題:,一下“、如圖所示的。中,分別作相等的圓心角/ AOB和/A' OB',將圓心| 彳,角/AOB繞圓心O旋轉(zhuǎn)到/ A' OB'
11、位置,你能發(fā)現(xiàn)哪些等量關(guān)系,為什么 學(xué)生回答:【教學(xué)說明】AB=Ab , AB=A' B'.理由:二.半徑 OA與OA'重合,且/ AOB=/ A' OB' ,半徑 OB與OB'重合.二.點(diǎn)A與點(diǎn)A重合,點(diǎn)B與點(diǎn)B'重合,AB與 Ab 重合,弦 AB 與弦 A' B'重合.,.AB=Ab ,ab=az b(2)探究2:同學(xué)們思考一下,在等圓中,這些結(jié)論是否成立學(xué)生回答:教師指導(dǎo):在等圓。O和。O'中分別作/ AOB=/A' O' B',然后滾動(dòng)一個(gè)圓, 使圓心。與O'重合,固定圓心,
12、將其中的一個(gè)圓旋轉(zhuǎn)一個(gè)角度,使得OA與O' A重合,/AOB與/A' O' B'重合,則有上面相同結(jié)論,AB=A' B' , Ab=Ab .(3)凝煉結(jié)果:弧、弦、圓心角之間關(guān)系的定理:在同一個(gè)圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弓相等.(4)推論:在同圓或等圓中,如果兩個(gè)圓心角,兩條弧和兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。注意:圓心角、弦、弦關(guān)系定理的前提條件是在同圓或等圓中,沒有這一條,定理不成立.推理格式: 如圖所示,。O中, 若AB= CD,則, ;(2)若 / AOB= / COD,貝U, ;(3)若 A
13、B=CD,則, .3、自學(xué)課文:教材P48例1【分析】在同圓中,由弦相等可以得到圓心角相等,從 題解決.學(xué)生自主完成 三、學(xué)習(xí)成果展示:1、如圖是七年級(jí)(1)班參加課外興趣小組人數(shù)的扇形統(tǒng)計(jì)圖,則表示唱歌興趣 小組人數(shù)的扇形的圓心角的度數(shù)是° ° ° °2、下列說法中,正確的是()B.等弧所對(duì)的弦相等D .弦相等所對(duì)的圓心角相等A.等弦所對(duì)的弧相等C.圓心角相等,所對(duì)的弦相等3、做課文P49練習(xí)題第1,2題4、如圖,在4ABC中,/ACB=90 ,/B=25° ,以C點(diǎn)為圓心,CA的長為 XTX 半徑的圓交ab于點(diǎn)d,求Ad的度數(shù).(弧的度數(shù)等
14、于它所對(duì)的圓心 二?角的度數(shù))【分析】要求Ad的度數(shù),根據(jù)弧的度數(shù)等于它所對(duì)的圓心角的度數(shù),故只需求出/ DCA的度數(shù).解:連接 CD如圖.一/ACB=90 ,/B=25° ,/ A=65° . CD=CA, ./CDA=65 ,. / DCA=180 -65° X 2=50° .Ad的度數(shù)為50° .教師點(diǎn)撥:在圓中求角的度數(shù)時(shí),把角放在直角三角形和等腰三角形中去解決是 一種常用的方法.四、課堂小結(jié)1 .學(xué)生總結(jié)本堂課的收獲與困惑.2 .教師強(qiáng)調(diào):圓心角定理是圓中證弧等、弓 五、課堂檢測1 .如圖所示,是圓心角.2 .已知。O的半徑為 5 c
15、m,弦 AB的長為 =.3 .如圖,已知 AB為。的直徑,點(diǎn)D為半 . 一 一一 . ,數(shù)是BD所對(duì)圓心角度數(shù)的兩倍,則圓心角/玄等、弦心距等、圓心角等的常用方法.5 cm,則弦 AB所對(duì)的圓心角/ AOB y二,圓周上的一點(diǎn),且 AD所對(duì)圓心角的度BOD的度數(shù)為.A. AB>CDB. AB= CD5.如圖,AB是。的直徑,BG CD則/BCD等于()A. 100°B, 110°6、在。o中,Ab所對(duì)的圓心角有_OAB=50° ,C. ABV CDD. AB=2CD1 / n)、DA 是。的弦,且 BC= CD= DA. " :C. 120
16、6;D. 135°_一個(gè),弦AB所對(duì)的弧有 條.若/ /AB= CD),那么AB和CD的關(guān)系則AB所對(duì)的圓心角為度.7、已知:如圖,在 。0中,弦AB=CD求證:(1)Ac= Bd;(2)/ AOC= / BOD.8、如圖所示,O Oi和。O2為兩個(gè)等圓,QiA/ AD相交丁點(diǎn)E, ADgG)O1和UO2分別交于點(diǎn) 求證:AB=CD.(證明:O1A/ O2D,.A=/ D.bqr ”去受 wD. / AQB=/ DO2C. 又:。Oi 和。O2 為兩個(gè)等圓, .AB=CD.)六、課后作業(yè):1、教材P56第1、2題.2、如圖所示,以平行四邊形拓展練習(xí):ABCD的頂點(diǎn)A為圓心,AB為半徑
17、作圓,交 AD, BC于E, F,延長BA交。A于G,求證:GE= EF3、如圖,AB是。的直徑,AC= CD, /COD= 60(1) AOC是等邊三角形嗎請說明理由;(2)求證:OC/ BD.七、教學(xué)反思:第三課時(shí)圓心角、圓周角(第2課時(shí))2.2.2圓周角 (第1課時(shí))一一圓周角定理及推論1學(xué)習(xí)目標(biāo):1、理解圓周角的定義,會(huì)區(qū)分圓周角和圓心角.2、能在證明或計(jì)算中熟練運(yùn)用圓周角的定理.教學(xué)重點(diǎn)、難點(diǎn)1、重點(diǎn):理解并掌握圓周角的概念及圓周角與圓心角之間的關(guān)系,能進(jìn)行有關(guān)圓周角問題的簡單推理和計(jì)算.2、難點(diǎn):分類討論及由特殊到一般的轉(zhuǎn)化思想的應(yīng)用.教學(xué)過程:一、新課引入1、知識(shí)回顧:(1)圓心
18、角定義(2)判定圓心角的條件:B2、觀察與思考:如圖所示的角與圓心角有何不同Pt* O二、新知探究:A1、探究一;圓周角定義(1)自主學(xué)習(xí):閱讀教材P49,回答下列問題.1.如圖所示的角中,哪些是圓周角(2)(3)(4)(5)圓周角定義:頂點(diǎn)在上,并且兩邊都與圓 的角叫做圓周角.(3)判定圓周角必須符合的兩個(gè)條件:頂點(diǎn)在圓上兩邊與圓相交.2、探究二:圓周角定理及推論1.(1)活動(dòng)一:同學(xué)們作出AB所對(duì)的圓周角,和圓心角,學(xué)生分組討論,并回 廠一答下列問題:問題1、麗所對(duì)的圓周角有幾個(gè)1,問題2度量下這些圓周角的關(guān)系.問題3這些圓周角與圓心角/ AOB的關(guān)系.學(xué)生解答:AB所對(duì)的圓周角的個(gè)數(shù)有無
19、數(shù)個(gè);通過度量,這些圓周角相等.通過度量,同弧對(duì)的圓周角是它所對(duì)圓心角的一半.(2)活動(dòng)二、同學(xué)們思考如何推導(dǎo)上面的問題 (3)的結(jié)論教師引導(dǎo)學(xué)生分類討論:4當(dāng)點(diǎn)o在/ba"上,:劫/當(dāng)點(diǎn)O在/BAC的內(nèi)部,£當(dāng)點(diǎn)O在/BAC外部.I5注:由同學(xué)們分組討論,自己完成.由同學(xué)們討論,代表回答.11【教學(xué)說明】作直徑 AE,由/ BAC玄OAC上OAB及/ OAC=1 / EOC/ OAB=1 /221 1111,BOE 得:/ BAC=- / EOC- / BOE=- (/EOC/ BOE)=- / BOC.2 222(3)凝煉結(jié)果:從得出圓周角定理:文字語言:在同圓或等圓中
20、,或所對(duì)的圓周角相等,都等于這條弧所對(duì)的 的一半.推理格式:;(4)圓周角定理論1:文字語言:在同圓或等圓中,相等的圓周角所對(duì)的弧也 .推理格式:;3、自主學(xué)習(xí):課文P52例2,教師答凝。三、學(xué)習(xí)成果展示:1 .如圖,在。O中,AD=DC則圖中相等的圓周角的對(duì)數(shù)是( D )對(duì) 對(duì) 對(duì)對(duì)2 .如圖所示,點(diǎn)A, B, C, D在圓周上,/ A=65° ,求/ D的度數(shù).(答案.650 )3 .如圖所示,已知圓心角/ BOC=100,點(diǎn)A為優(yōu)弧Bc上一點(diǎn),求圓周角/ BAC的度數(shù).(答案:500 )4 .如圖所示,在。中,/AOB=100° ,C為優(yōu)弧AB的中點(diǎn),求/ CAB的度
21、數(shù).(答案:650 ) 5、如圖,(1)已知Ad ?C.求證:AB=CD.證明:(i); Ad?c ,Ad Ac Bc Ac ,. Dc Ab , . AB=CD.(2)如果 AD=BC#證:Dc Ab .(2)/ad=bc, Ad Bc,. Ad Ac Bc Ac,即 Dc Ab.教師指導(dǎo):在今后證明線段相等的題目中又加了一種有弧相等也可以得到線段相 等的方法了.四、課堂小結(jié)1 .這節(jié)課你學(xué)到了什么還有哪些疑惑2 .在學(xué)生回答基礎(chǔ)上.教師點(diǎn)拔:圓周角的定義是基礎(chǔ).圓周角的定理是重點(diǎn),圓周角定理的推導(dǎo)是難點(diǎn).圓周角定理的應(yīng)用才是重中之重.五、課堂檢測:1 .如圖,點(diǎn) A、B、c在。O 上,/
22、AcB= 30° ,則 sin/AOB 的值是()2、如圖,在 OO中,弦Ac/半徑 OB, / BOc= 50° ,則/ OAB的度數(shù)為( )A. 25°B, 50°c. 60°D. 30°3、如圖,。0中,弦AR cD相交于點(diǎn) 巳 若/A= 30° , /APD= 70° ,則/ B等于()A. 30°B, 35°c. 40°D, 50 °4、如圖,已知 AB, cD是。的兩條直徑,/ ABc= 28°,那么/ BAD=()A. 28°B, 42
23、76;c. 56°D, 84°5、如圖,已知 A、B、C、D是。上的四個(gè)點(diǎn),AB= BC,BD交AC于點(diǎn)E,連接CD,AD.求證:DB平分/ADC.JrJ六、課后作業(yè):1、課文P52練習(xí)題第1、2、3題 2、教材P56第35題.拓展練習(xí):3、如圖,AB, CD是。的直徑,DF, BE是弦,且 DF= BE,求證:/ D= / B.4、如圖,已知 CD平分/ACB, DE/ AC,求證:DE= BC.七、教學(xué)反思:,另一種方法是第四課時(shí) 圓心角、圓周角(第3課時(shí))2.2.2圓周角(第2課時(shí))一一圓周角定理推論2學(xué)習(xí)目標(biāo):1 .鞏固圓周角概念及圓周角定理.2 .掌握圓周角定理的
24、推論2:直徑所對(duì)的圓周角是直角,90。的圓周角所對(duì)的 弦是直徑.3 .掌握圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對(duì)角互補(bǔ) .教學(xué)重點(diǎn)、難點(diǎn)1、重點(diǎn):對(duì)直徑所對(duì)的圓周角是直角及 90°的圓周角所對(duì)的弦是直徑這些性質(zhì) 的理解.2、難點(diǎn):對(duì)圓周角定理推論的靈活運(yùn)用是難點(diǎn).教學(xué)過程:一、新課引入:1、知識(shí)回顧:(1)圓周角定義;(2)圓周角定理及其推論1;2、情境問題:如圖,木工師傅為了檢驗(yàn)如圖所示的工作的凹面是否成半圓 ,他只 用了曲尺(它的角是直角)即可,你知道他是怎樣做的嗎(引入課題) 二、新知探究:1、探究一:圓周角定理的推論2:(1)活動(dòng)一:如圖,AB為。的直徑,/ C、/D、/E所對(duì)
25、的圓心角關(guān)都是/AOB,求出/G /D、/ E的度數(shù)由此你發(fā)現(xiàn)了什么解::A、O、B在一條直線上,/AOB是平角,/AOB=180 ,由圓周角定理知/。=/ C2=Z C3=90° ,反過來也成立.(2)凝煉結(jié)果:圓周角定理的推論 2:半圓(或直徑)所對(duì)的圓周角是直角,90。的圓周角所對(duì)的弦是直徑(3)自主學(xué)習(xí):教材P54例3 (教師答凝)教師點(diǎn)拔:在圓中求角時(shí),一種方法是利用圓心角的度數(shù)求 把所求的角放在90°的三角形中去求(4)回首解決引例問題:如圖,木工師傅為了檢驗(yàn)如圖所示的工作的凹面是否成半圓 ,他只用了曲尺(它的 角是直角)即可,你知道他是怎樣做的嗎解:當(dāng)曲尺的兩
26、邊緊靠凹面時(shí),曲尺的直角頂點(diǎn)落在圓弧上,則凹面是半圓形狀, 否則工作不合格.2、探究二:圓內(nèi)接四邊形的性質(zhì):(1)自主學(xué)習(xí):課文P54:圓內(nèi)接四邊形和四邊形的外接圓的概念如果一個(gè)多邊形的所有頂點(diǎn)都在同一個(gè)圓上,這個(gè)多邊形叫做圓內(nèi)接多邊形這個(gè)圓叫做多邊形的外接圓;圓內(nèi)接四邊形對(duì)角區(qū)社 (2)探究圓內(nèi)接四邊形的性質(zhì):活動(dòng)1:如圖,四邊形ABCD為。的內(nèi)接四邊形, 試猜想:/ BAD與/ BCD及/ ABC與/ ADC有何數(shù)量關(guān)系/ BAD與/ DCE有何數(shù)量關(guān)系(3)凝煉結(jié)果:圓內(nèi)接四邊形的對(duì)角互補(bǔ).圓內(nèi)接四邊形的一個(gè)外角等于與它不相鄰的內(nèi)對(duì)角;(4)自主學(xué)習(xí);課文P55例4。三、自學(xué)成果展示:1、如圖所示,OA為。的半徑,以O(shè)A為直徑的圓。C與。的弦AB相交于點(diǎn) D,若 OD=5cmj® BE=10cm.2、如圖,已知/BOC=70 ,則/BAC= / DAC=.解:由/ BOC=70可得所對(duì)白圓周角為35° ,又/ BAC與該圓周角互補(bǔ),故 / BAC=145 ,而 / DAC吆 BAC=180 則/DAC=35 .3、如圖,點(diǎn)A、B、D、E在。上,弦AE、BD的延長線相交于點(diǎn) C若AB是。的直徑,D是BC的中點(diǎn).試判斷AR AC之間的大小關(guān)系,并給出證明;(2)在上述題設(shè)條件下,4ABC還需滿足什么條件,使
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋更名申請書范文
- 2024年12月中共三亞市委精神文明建設(shè)和愛國衛(wèi)生運(yùn)動(dòng)委員會(huì)辦公室公開招聘下屬事業(yè)單位人員2人(第1號(hào)海南)筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 鄉(xiāng)村醫(yī)生辭職申請書
- 2025至2030年中國針式?jīng)_擊磨數(shù)據(jù)監(jiān)測研究報(bào)告
- 不動(dòng)產(chǎn)申請書怎么
- 2025至2030年中國磁柱電感數(shù)據(jù)監(jiān)測研究報(bào)告
- 民事執(zhí)行申請書范本
- 2025年吉普車后踏板項(xiàng)目可行性研究報(bào)告
- 2025至2030年中國新花籃毯紡數(shù)據(jù)監(jiān)測研究報(bào)告
- 運(yùn)輸變更申請書
- AutoCAD 2020中文版從入門到精通(標(biāo)準(zhǔn)版)
- 紡絲原液制造工(中級(jí))理論考試復(fù)習(xí)題庫(含答案)
- 大梅沙河道河道流量水位
- 張岱年:《中國文化概論》
- 緊固件常用標(biāo)準(zhǔn)件匯總圖
- 人教版初二英語八年級(jí)上冊全冊英語單詞表
- 繪本成語故事:四面楚歌
- HCIE-Transmission H12-931認(rèn)證培訓(xùn)考試題庫匯總(含答案)
- 《紅色經(jīng)典》校本課程
- 車輛委托保管合同 車輛委托保管協(xié)議
- 保育員教學(xué)大綱和教學(xué)計(jì)劃
評(píng)論
0/150
提交評(píng)論