數(shù)列求和的基本方法和技巧_第1頁
數(shù)列求和的基本方法和技巧_第2頁
數(shù)列求和的基本方法和技巧_第3頁
數(shù)列求和的基本方法和技巧_第4頁
數(shù)列求和的基本方法和技巧_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、數(shù)列求和的基本方法和技巧就幾個歷屆高考數(shù)學和數(shù)學競賽試題來談談數(shù)列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法. 1、 等差數(shù)列求和公式: 2、等比數(shù)列求和公式:3、 4、5、例1 已知,求的前n項和.解:由 由等比數(shù)列求和公式得 (利用常用公式) 1 例2 設Sn1+2+3+n,nN*,求的最大值. 解:由等差數(shù)列求和公式得 , (利用常用公式) 當 ,即n8時,二、錯位相減法求和這種方法是在推導等比數(shù)列的前n項和公式時所用的方法,這種方法主要用于求數(shù)列anbn的前n項和,其中 an 、 bn 分別是等差數(shù)列和等比數(shù)列.例3 求和:

2、解:由題可知,的通項是等差數(shù)列2n1的通項與等比數(shù)列的通項之積設. (設制錯位)得 (錯位相減)再利用等比數(shù)列的求和公式得: 例4 求數(shù)列前n項的和.解:由題可知,的通項是等差數(shù)列2n的通項與等比數(shù)列的通項之積設 (設制錯位)得 (錯位相減) 練習:求:Sn=1+5x+9x2+(4n-3)xn-1 解:Sn=1+5x+9x2+(4n-3)xn-1 兩邊同乘以x,得 x Sn=x+5 x2+9x3+(4n-3)xn -得,(1-x)Sn=1+4(x+ x2+x3+ )-(4n-3)xn 當x=1時,Sn=1+5+9+(4n-3)=2n2-n 當x1時,Sn= 1 1-x 4x(1-xn) 1-x

3、 +1-(4n-3)xn 三、反序相加法求和這是推導等差數(shù)列的前n項和公式時所用的方法,就是將一個數(shù)列倒過來排列(反序),再把它與原數(shù)列相加,就可以得到n個.例5 求證:證明: 設. 把式右邊倒轉過來得 (反序) 又由可得 . +得 (反序相加) 例6 求的值解:設. 將式右邊反序得 . (反序) 又因為 +得 (反序相加)89 S44.5練習:已知lg(xy)=a,求S,其中S=解: 將和式S中各項反序排列,得 將此和式與原和式兩邊對應相加,得 2S=+ + (n+1)項 =n(n+1)lg(xy) lg(xy)=a S=n(n+1)a四、分組法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列

4、,若將這類數(shù)列適當拆開,可分為幾個等差、等比或常見的數(shù)列,然后分別求和,再將其合并即可.例7 求數(shù)列的前n項和:,解:設將其每一項拆開再重新組合得 (分組)當a1時, (分組求和)當時,例8 求數(shù)列n(n+1)(2n+1)的前n項和.解:設 將其每一項拆開再重新組合得 Sn (分組) (分組求和) 練習:求數(shù)列的前n項和。解: 五、裂項法求和這是分解與組合思想在數(shù)列求和中的具體應用. 裂項法的實質是將數(shù)列中的每項(通項)分解,然后重新組合,使之能消去一些項,最終達到求和的目的. 通項分解(裂項)如:(1) (2)(3) (4)(5)(6) 例9 求數(shù)列的前n項和.解:設 (裂項)則 (裂項求和

5、) 例10 在數(shù)列an中,又,求數(shù)列bn的前n項的和.解: (裂項) 數(shù)列bn的前n項和 (裂項求和) 例11 求證:解:設 (裂項) (裂項求和) 原等式成立 練習:求 1 3, 1 1 5, 1 3 5, 1 63之和。 解: 六、合并法求和針對一些特殊的數(shù)列,將某些項合并在一起就具有某種特殊的性質,因此,在求數(shù)列的和時,可將這些項放在一起先求和,然后再求Sn. 例12 求cos1+ cos2+ cos3+ cos178+ cos179的值.解:設Sn cos1+ cos2+ cos3+ cos178+ cos179 (找特殊性質項)Sn (cos1+ cos179)+( cos2+ co

6、s178)+ (cos3+ cos177)+(cos89+ cos91)+ cos90 (合并求和) 0例13 數(shù)列an:,求S2002.解:設S2002由可得 (找特殊性質項)S2002 (合并求和) 5例14 在各項均為正數(shù)的等比數(shù)列中,若的值.解:設由等比數(shù)列的性質 (找特殊性質項)和對數(shù)的運算性質 得 (合并求和) 10七、利用數(shù)列的通項求和先根據(jù)數(shù)列的結構及特征進行分析,找出數(shù)列的通項及其特征,然后再利用數(shù)列的通項揭示的規(guī)律來求數(shù)列的前n項和,是一個重要的方法.例15 求 之和.解:由于 (找通項及特征) (分組求和)例16 已知數(shù)列an:的值.解: (找通項及特征) (設制分組) (裂項) (分組、裂項求和) 練習:求5,55,555,的前n項和。解:an= 5 9(10n-1)Sn = 5 9(10-1)+ 5 9(102-1) + 5 9(103-1) + + 5 9(10n-1) = 5 9(10+102+103+10n)-n = (10n1-9n-10)以上一個7種方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論