高中數(shù)學(xué)教學(xué)與信息技術(shù)整合的探索_第1頁
高中數(shù)學(xué)教學(xué)與信息技術(shù)整合的探索_第2頁
高中數(shù)學(xué)教學(xué)與信息技術(shù)整合的探索_第3頁
高中數(shù)學(xué)教學(xué)與信息技術(shù)整合的探索_第4頁
高中數(shù)學(xué)教學(xué)與信息技術(shù)整合的探索_第5頁

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、高中數(shù)學(xué)教學(xué)與信息技術(shù)整合的探索記數(shù)學(xué)教學(xué)“整合”實(shí)驗(yàn)二例浙大附中 陳金康 姚綺一、問題的提出隨著社會資源信息化進(jìn)程的推進(jìn),中學(xué)的數(shù)學(xué)教學(xué)呈現(xiàn)了一個新的領(lǐng)域數(shù)學(xué)教學(xué)與信息技術(shù)的整合。學(xué)生是學(xué)習(xí)的主體,在數(shù)學(xué)學(xué)習(xí)中,有算式,算理的運(yùn)算與推理,有對事物的數(shù)量、形狀、運(yùn)動狀態(tài)的分析;還有用數(shù)學(xué)概念進(jìn)行的“數(shù)”“形”的轉(zhuǎn)化。學(xué)生在學(xué)習(xí)中思維狀態(tài)要對很多事物進(jìn)行歸納、探究、驗(yàn)證。學(xué)生在學(xué)習(xí)中需要與教師交流,學(xué)生之間也需要交流,甚至有學(xué)生之間的解題比賽。這些操作、思考與交流中若與信息技術(shù)整合起來,可較大地提高教學(xué)的效果。那么,數(shù)學(xué)教學(xué)與信息技術(shù)整合需要哪些準(zhǔn)備呢?1、 整合的教學(xué)理念是什么。2、 整合的教

2、學(xué)條件是什么。二、整合的教學(xué)理念學(xué)生是學(xué)習(xí)的主體,教師的主導(dǎo)作用是構(gòu)建教學(xué)的情境。讓學(xué)生在一定的條件下去思考,操作與交流。從而提升學(xué)生的數(shù)學(xué)素養(yǎng),科學(xué)素養(yǎng)。就是說,讓學(xué)生在一種積極主動的狀態(tài)下學(xué)習(xí),通過有目的的,自覺的數(shù)學(xué)思維與操作學(xué)習(xí)數(shù)學(xué),成為整合課的關(guān)鍵。而這種整合主要依靠教師的教學(xué)整合設(shè)計和教學(xué)過程的調(diào)控,使學(xué)生發(fā)現(xiàn)數(shù)學(xué)的內(nèi)在規(guī)律,形成內(nèi)在聯(lián)系。達(dá)到對數(shù)學(xué)本質(zhì)的理解和應(yīng)用。這就是整合的全過程。信息技術(shù)為創(chuàng)設(shè)這種情境提供了可能。信息技術(shù)為“多元聯(lián)系表示”提供了較為有力的工具。信息技術(shù)為復(fù)雜、重復(fù)的運(yùn)算、制圖,提供了簡潔、快速的工具?!岸嘣?lián)系表示“就是使用多種方法來表示同一數(shù)學(xué)的概念,其中

3、不同的表示方法有不同的側(cè)重。在直線與圓位置關(guān)系這一堂公開課中:直線與圓相交兩個公共點(diǎn)直線與圓相切一個公共點(diǎn)直線與圓相離無公共點(diǎn)距離d,圓半徑r當(dāng)d=r時,直線與圓相切當(dāng)dr時,直線與圓相離直線的平行移動方程系數(shù)的不同賦值。在線性規(guī)劃的應(yīng)用問題這堂公開課中:二元一次不等式組平面區(qū)域直線方程的斜率,截距直線的傾斜角、直線與y軸的交點(diǎn)目標(biāo)函數(shù)直線不等式的變化不等式系數(shù)的不同賦值。學(xué)生通過對這些數(shù)學(xué)概念內(nèi)涵的不同側(cè)重面的理解與表達(dá),了解了同一個數(shù)學(xué)概念有“數(shù)”與“形”兩種不同的意義。它可以幫助學(xué)生把握數(shù)學(xué)概念、法則在不同情況下的特征。擴(kuò)大了他們思考的空間,從而大大地增強(qiáng)了他們對事物特征的理解與把握。信

4、息技術(shù)還為“數(shù)學(xué)實(shí)驗(yàn)”提供了廣闊的天地。在直線與圓位置關(guān)系中,學(xué)生可以用在圓周上取任意一點(diǎn),驗(yàn)證圓周上點(diǎn)與直線的距離d與圓半徑r的關(guān)系,使學(xué)生掌握“事物是運(yùn)動著的”這一重要的哲學(xué)思想。在線性規(guī)劃的應(yīng)用問題中同樣學(xué)生可對目標(biāo)函數(shù)的系數(shù)賦不同的值來反復(fù)探究哪一條表示目標(biāo)函數(shù)的直線能使我們找到最值。這種“驗(yàn)證”與“探究”使學(xué)生慢慢提升科學(xué)求證的素養(yǎng)。信息技術(shù)的運(yùn)用比只靠紙與筆的反復(fù)運(yùn)算作圖不知提高了多少倍的效率。使“驗(yàn)證”與“探究”在中學(xué)教學(xué)成為一種可能。信息技術(shù)還為師生、生生交流提供了一個舞臺。這兩堂課教師可以通過監(jiān)控隨時了解每位學(xué)生操作的過程,也為學(xué)生之間互相交流提供了條件。教師可以隨時打開某位

5、學(xué)生操作的顯示屏供大家評價。讓學(xué)生之間互相借鑒,取長補(bǔ)短,也能欣賞與品嘗別人與自己的學(xué)習(xí)成果。信息技術(shù)還能使學(xué)習(xí)環(huán)境變得豐富多彩。在這兩堂課中,很多學(xué)生在“顯示直線”、“顯示平面區(qū)域”中采用了自己喜歡的不同色彩,使顯示屏中的圖線漂亮且引人注目,大大提高了學(xué)習(xí)的效果。在整合過程中,學(xué)生的數(shù)學(xué)思維得到了充分展示。在直線與圓位置關(guān)系這堂課中,圓周上不同點(diǎn)的驗(yàn)證,直線的反復(fù)移動,讓學(xué)生自己總結(jié)出一般的結(jié)論。然后又用這一般的結(jié)論去解決類似的其他問題。歸納、驗(yàn)證一般結(jié)論演繹解決具體問題。這樣的思維軌跡比傳統(tǒng)的套用公式與結(jié)論豐富得多,深刻得多。這樣的思維軌跡若能不斷地演習(xí),能在提高學(xué)生的科學(xué)素養(yǎng)方面起到極大

6、的作用。三、整合的教學(xué)條件當(dāng)然,硬件是一個必要的條件,這幾年教育投入的加大為學(xué)校在電腦等設(shè)備的配置上提供了保障。還有更可喜的是社會,特別是家庭大都配置了電腦,很多學(xué)生的計算機(jī)操作是校外學(xué)會與提高的。學(xué)校開設(shè)的信息技術(shù)課更是讓每一位學(xué)生得到了平等的教育。但從目前的情況來看,要把數(shù)學(xué)教學(xué)與信息技術(shù)整合起來,對師資提出了更高的要求;教師不僅要能熟練地操作電腦,還要能很合理地把數(shù)學(xué)概念、法則在信息技術(shù)中構(gòu)建多元聯(lián)系的表示,充分發(fā)揮信息技術(shù)的這個有力的工具。譬如,直線與圓位置關(guān)系與線性規(guī)劃的應(yīng)用問題這兩堂課中所使用的幾何畫板與線性規(guī)劃模塊要靠幾位教師自己去開發(fā)肯定是不行的。最好能有專門的人員從事這類問題

7、的制作。任何一種教學(xué)不能缺少的是評價機(jī)制。目前階段我校的實(shí)驗(yàn)也僅僅是初創(chuàng)階段,只局限于一些感性的評價。我們想在繼續(xù)進(jìn)行整合實(shí)驗(yàn)的基礎(chǔ)上深入研究整合教學(xué)的評價體系。總之,整合教學(xué)的條件是:1、硬件的配置;2、數(shù)學(xué)教學(xué)多元聯(lián)系的構(gòu)建與設(shè)計;3、基礎(chǔ)軟件的開發(fā);4、評價體系的建立。目前還存在的問題,教師建議信息技術(shù)課程也必須進(jìn)行配套的改革。譬如,一些數(shù)學(xué)及其他學(xué)科常用的一些基本模塊的使用,如幾何畫板等的使用應(yīng)該在信息技術(shù)課程中實(shí)施教學(xué)。實(shí)際上整合教學(xué)應(yīng)該是中學(xué)教學(xué)中的系統(tǒng)工程。還有在整合教學(xué)中師生的情感交流往往會顯得比較缺乏,整合教學(xué)中有機(jī)機(jī)對話,人機(jī)對話;缺少人與人之間的情感交流會使得課堂缺乏生氣

8、和活力。這也是我們下階段在實(shí)驗(yàn)中有待研究的一個主要問題。數(shù)學(xué)教學(xué)與信息技術(shù)的整合畢竟是大勢所趨,不管困難有多大,只要有心去研究肯定會給中學(xué)數(shù)學(xué)教學(xué)帶來革命性的變化。附兩課例:數(shù)學(xué)教學(xué)與信息技術(shù)整合課例一用幾何畫板輔助進(jìn)行直線與圓位置關(guān)系的教學(xué)一、教學(xué)目標(biāo):1、 掌握直線與圓的三種位置關(guān)系及其判定方法。2、 掌握利用數(shù)形結(jié)合解決與直線、圓有關(guān)問題的思想方法。3、 會利用“幾何畫板”形象地展示問題,加深對問題的理解并探尋解題的思路。4、 會使用“幾何畫板”求解一些簡單的數(shù)形結(jié)合問題。5、 培養(yǎng)學(xué)生觀察、探究、動手能力以及發(fā)散性思維和創(chuàng)造性思維。二、教學(xué)重點(diǎn)、難點(diǎn):1、教學(xué)重點(diǎn):如何求解“圓上到直線

9、距離為a(a0)的點(diǎn)的個數(shù)”問題。解決方法:利用“幾何畫板”求解(讓學(xué)生有一個感性的認(rèn)識):作出圓和直線的圖形,在圓上取一點(diǎn),度量出點(diǎn)到直線的距離,然后讓點(diǎn)在圓上移動,觀察滿足條件的點(diǎn)的個數(shù)。利用“幾何畫板”探尋解題思路,通過“幾何畫板”的演示,啟發(fā)和引導(dǎo)學(xué)生將問題逐漸轉(zhuǎn)化:點(diǎn)到直線的距離兩平行直線間距離圓上一點(diǎn)P到直線l的距離的最值問題過P點(diǎn)的直線與圓相切的問題圓上到直線距離為a(a0)的點(diǎn)的個數(shù)到直線的距離為a的兩條平行線與圓的交點(diǎn)個數(shù)通過具體問題的分析、講解,由學(xué)生歸納出一般結(jié)論,最后用于指導(dǎo)具體問題的操作。在該問題的解決過程中,采用“幾何畫板”求解和常規(guī)方法求解相結(jié)合,同時培養(yǎng)學(xué)生的探

10、索精神、動手能力和學(xué)生的基本技能以及解題能力。2、 教學(xué)難點(diǎn):學(xué)生能熟練使用“幾何畫板”,對于一些簡單的問題會設(shè)計過程、尋找思路并解得答案。解決方法:事先通過培訓(xùn)使學(xué)生掌握一些基本的操作方法,了解“幾何畫板”所能解決的問題。在課堂上通過例題的講解和示范,使學(xué)生對如何將一個數(shù)學(xué)問題中的條件在“幾何畫板”中呈現(xiàn)出來,對問題答案的求解又可以通過“幾何畫板”中的什么操作來完成這整一個過程有一個清晰的認(rèn)識;然后在老師的指導(dǎo)下讓學(xué)生對類似問題的求解進(jìn)行操練并且不斷深化,使學(xué)生基本掌握使用“幾何畫板”求解一些簡單的數(shù)形結(jié)合問題的方法和過程。三、教學(xué)過程1、直線與圓的位置關(guān)系按直線與圓的交點(diǎn)個數(shù)分:相交(兩個

11、公共點(diǎn))、相切(一個公共點(diǎn))、相離(無公共點(diǎn))判別方法(根據(jù)圓心到直線的距離d與半徑r之間的大小關(guān)系):相交(dr)2、直線與圓位置關(guān)系的應(yīng)用(數(shù)形結(jié)合問題)例1、分析 借助“幾何畫板”,在圓上取一點(diǎn)P,度量出它到直線的距離,通過動態(tài)演示,對所求點(diǎn)的位置給學(xué)生一個直觀印象。將點(diǎn)到直線的距離轉(zhuǎn)化為兩條平行線(過P點(diǎn)作已知直線的平行線)間的距離,而當(dāng)兩條平行線間距離最大時,過P點(diǎn)的直線與圓剛好相切,此時距離為r+d(其中d為圓心到直線的距離)。進(jìn)一步將結(jié)論推廣:直線截圓所得的劣弧上的點(diǎn)到直線的距離的最大值為r-d(該結(jié)論由學(xué)生自己得出)。例1的結(jié)論為后續(xù)應(yīng)用作了鋪墊。例2、的點(diǎn)的個數(shù)。分析 利用“

12、幾何畫板”求解:作出圓和直線的圖形,在圓上取一點(diǎn),度量出點(diǎn)到直線的距離,然后讓點(diǎn)在圓上動,觀察滿足條件的點(diǎn)的個數(shù)。另解:到直線的距離為1/2的點(diǎn)的軌跡是兩條平行線,這兩條平行線與圓的交點(diǎn)就是滿足條件的點(diǎn)。(該結(jié)論為利用常規(guī)方法解此類型問題提供了思路。)鞏固練習(xí)(在老師的指導(dǎo)下,讓學(xué)生自己利用“幾何畫板”對類似問題的求解進(jìn)行操練,增強(qiáng)動手能力): (該練習(xí)由學(xué)生作圖、求解,然后讓一位同學(xué)演示結(jié)果)將上述問題一般化,提出:已知圓C與直線l,討論圓上到直線距離為a(a0)的點(diǎn)的個數(shù)。為降低難度,先考慮問題:已知圓C與直線l相交(設(shè)直線不過圓心),圓半徑為r,圓心C到直線l的距離為d(d0),討論圓上

13、到直線距離為a(a0)的點(diǎn)的個數(shù)。CxyOAB考慮到到直線的距離為a的點(diǎn)的軌跡是兩條平行線,因此這兩條平行線與圓的交點(diǎn)個數(shù)即滿足條件的點(diǎn)的個數(shù)。制作動畫,讓兩條平行線從與直線l重合的位置向兩側(cè)平移,通過該動畫讓學(xué)生觀察這兩條平行線與圓的交點(diǎn)個數(shù)與a、r以及d的關(guān)系,最后由學(xué)生自己總結(jié)出一般結(jié)論:當(dāng)0ar-d時,4個(每段弧上各兩個);當(dāng)a=r-d時,3個(其中1個是點(diǎn)B,另兩個點(diǎn)在優(yōu)弧上);當(dāng)r-dar+d時,0個。通過這一結(jié)論的得出可以有效地培養(yǎng)學(xué)生的觀察、探究和歸納總結(jié)的能力。這一結(jié)論又為我們提供了利用常規(guī)方法解決該類問題的一種具體操作模式和求解方法。作為該方法的一個具體應(yīng)用,再看下面一個

14、練習(xí): 略解 滿足條件的點(diǎn)有4個。對該問題的討論我們最先由一個具體例子引出,然后歸納出一般結(jié)論,最后用于指導(dǎo)具體問題的操作,是一個從歸納到演繹的過程。同時該問題又可以進(jìn)一步深化和推廣:當(dāng)圓與直線l相切或相離時,討論圓上到直線距離為a的點(diǎn)的個數(shù)。(此問題留給學(xué)生課后思考)四、教學(xué)特點(diǎn):1、 該課是對信息技術(shù)與數(shù)學(xué)課堂教學(xué)相結(jié)合的嘗試,著重培養(yǎng)學(xué)生利用“幾何畫板”解決數(shù)學(xué)問題的能力,并且兼顧常規(guī)的基本技能的培養(yǎng)。2、 整個教學(xué)過程師生共同完成,體現(xiàn)學(xué)生自主學(xué)習(xí),同時學(xué)會探究問題,貫徹啟發(fā)式教學(xué),體現(xiàn)以學(xué)生為主體的教學(xué)原則。信息技術(shù)與數(shù)學(xué)教學(xué)整合課例二用線性規(guī)劃作圖模板學(xué)習(xí)線性規(guī)劃的應(yīng)用問題一、 教

15、學(xué)目標(biāo):1、 掌握用二元一次不等式表示平面區(qū)域。2、 學(xué)會用線性規(guī)劃作圖模板做簡單的線性規(guī)劃式題和簡單的實(shí)際應(yīng)用問題。3、 了解生活中的線性規(guī)劃。4、 理解線性規(guī)劃中“數(shù)”和“形”結(jié)合的思想。5、 培養(yǎng)學(xué)生探究、動手的能力和創(chuàng)造性思維。二、 教學(xué)重點(diǎn)、難點(diǎn):1、 教學(xué)重點(diǎn):二元一次不等式表示平面區(qū)域。解決方法: 1)通過老師在教師機(jī)上演示用線性規(guī)劃作圖模板作圖,使得學(xué)生對用二元一次不等式表示平面區(qū)域有個感性的認(rèn)識。(同時,通過老師演示教學(xué)生如何使用此作圖工具) 2)讓學(xué)生利用線性規(guī)劃作圖模板自己動手在電腦上作圖,進(jìn)一步增強(qiáng)對此的理解。2、 教學(xué)難點(diǎn):把實(shí)際問題轉(zhuǎn)化成線性規(guī)劃問題,并給出解答。解

16、決方法:1) 老師先做一個應(yīng)用問題給學(xué)生,指出解決線性規(guī)劃應(yīng)用問題的一般步驟:根據(jù)題意列表設(shè)出變量,找出目標(biāo)函數(shù)列出滿足題意的線性約束條件(二元一次不等式組)用線性規(guī)劃作圖模板作出可行域,得到目標(biāo)函數(shù)值。2) 學(xué)生自己在教師題庫中找題應(yīng)用。三、 教學(xué)準(zhǔn)備:線性規(guī)劃作圖模板,線性規(guī)劃教師題庫(網(wǎng)上共享),網(wǎng)絡(luò)教室。四、 教學(xué)流程:學(xué)習(xí)目標(biāo)朝花夕拾簡單式題應(yīng)用問題實(shí)踐一刻數(shù)學(xué)生活作業(yè)五、 教學(xué)過程: 1、提出學(xué)習(xí)目標(biāo):線性規(guī)劃簡單式題應(yīng)用;線性規(guī)劃實(shí)際應(yīng)用問題;生活中的線性規(guī)劃。2、朝花夕拾:直線劃分平面區(qū)域: 使學(xué)生明白:二元一次不等式組平面區(qū)域 直線方程的斜率、截距直線的傾斜角、直線與y軸的交

17、點(diǎn) 目標(biāo)函數(shù)直線 不等式的變化不等式系數(shù)的不同賦值 3、 簡單式題: 實(shí)踐一刻:(學(xué)生利用多媒體師生互動平臺和線性規(guī)劃模板實(shí)踐) 4、應(yīng)用問題:例:某基金會準(zhǔn)備進(jìn)行兩種組合投資,穩(wěn)健型組合投資每份是由金融投資70萬元,房地產(chǎn)投資90萬元,電腦投資75萬元組成。進(jìn)取型組合投資每份是由金融投資40萬元,房地產(chǎn)投資90萬元,電腦投資150萬元組成。已知每份穩(wěn)健型組合投資每年獲利25萬元,每份進(jìn)取型投資每年獲利30萬元,若可用資金中,金融資金不超過290萬元,房地產(chǎn)資金不超過450萬元,電腦資金不超過600萬元,那么這兩種組合投資各投入多少份,能使一年獲利總額最多?分析:先根據(jù)題意列表再設(shè)變量,確定目

18、標(biāo)函數(shù)用線性規(guī)劃作圖模板作出線性約束條件表示下的可行域用平移直線的方法找到目標(biāo)函數(shù)的最優(yōu)解。再次實(shí)踐: 練習(xí):北京華欣公司計劃在今年內(nèi)同時出售“夜鶯牌多功能”電子琴和“OK智能型”洗衣機(jī),由于兩種產(chǎn)品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤達(dá)到最大。已知對這兩種產(chǎn)品有直接限制的因素是資金和勞動力,通過調(diào)查,得到關(guān)于兩種產(chǎn)品有關(guān)數(shù)據(jù)如下表: 8 6 單位利潤 110 10 110 10 5勞動力(工資) 300 20 30 成本月資金供應(yīng)量(百元)資金(百元)洗衣機(jī)單位產(chǎn)品 所需 電子琴 資金 試問:怎樣確定兩種貨的供應(yīng)量,才能使總利潤最大,最大利潤是多少?以上實(shí)踐一刻中實(shí)踐具體安排:1、 分組選題:進(jìn)入教師題庫,分組選題,組長定題。2、 組內(nèi)實(shí)踐:每位同學(xué)分別實(shí)踐,組長快速完成后檢查組員答題情況,并確定同學(xué)進(jìn)行展示。3、 交流結(jié)果:每組選一位同學(xué)通過互動平臺用自己的計算機(jī)展示過程和結(jié)果,其它同學(xué)核對和質(zhì)疑。 5、數(shù)學(xué)生活: 遲到所引起的焦慮可以規(guī)劃嗎?遲到的經(jīng)驗(yàn)似乎已成為不少都市人生活的一部分。但對于一個有責(zé)任感的赴約者,遲到始終會引起焦慮不安的感覺。利用線形規(guī)劃(linear programming)把這種焦慮更具體地描繪出來,或許有助改善遲到的情況。 假若A君和B君互訂以下的商務(wù)約

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論