




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、*歐陽光明*創(chuàng)編2021.03.072020年考研數(shù)學一考試大綱歐陽光明(2021.03. 07)考試科目:高等數(shù)學、線性代數(shù)、概率論與數(shù)理統(tǒng)計考試形式和試卷結構、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘.二、答題方式答題方式為閉卷、筆試.三、試卷內容結構高等數(shù)學約56%線性代數(shù)約22%概率論與數(shù)理統(tǒng)計約22%四、試卷題型結構單選題8小題,每小題4分,共32分填空題6小題,每小題4分,共24分解答題(包括證明題)9小題,共94分高等數(shù)學-函數(shù)、極限、連續(xù)考試內容函數(shù)的概念及表示法 函數(shù)的有界性、單調性.周期性和奇偶 性復合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質 及其
2、圖形初等函數(shù)函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質 函數(shù)的左極限和右極限 無窮小量和無窮大量的概念及其關系無窮小量的性質及無窮小量 的比較極限的四則運算極限存在的兩個準則:單調有界準則和 夾逼準則兩個重要極限:函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉 區(qū)間上連續(xù)函數(shù)的性質考試要求1. 理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用冋題的 函數(shù)關系.2. 了解函數(shù)的有界性、單調性、周期性和奇偶性.3. 理解復合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的 概念.4. 掌握基本初等函數(shù)的性質及其圖形,了解初等函數(shù)的概 念.5. 理解極限的概念,理解函數(shù)左極限與右極限的概念以及函*歐陽光
3、明*創(chuàng)編2021.03.07*歐陽光明*創(chuàng)編2021.03.07數(shù)極限存在與左極限、右極限之間的關系.6. 掌握極限的性質及四則運算法則.7. 掌握極限存在的兩個準則,并會利用它們求極限,掌握利 用兩個重要極限求極限的方法.8. 理解無窮小量、無窮大量的概念,掌握無窮小量的比較方 法,會用等價無窮小量求極限.9. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),合判別函 數(shù)間斷點的類型.10. 了解連續(xù)函數(shù)的性質和初等函數(shù)的連續(xù)性,理解閉區(qū)間上 連續(xù)函數(shù)的性質(有界性、最大值和最小值定理、介值定理),并 會應用這些性質.二. 一元函數(shù)微分學考試內容導數(shù)和微分的概念導數(shù)的幾何意義和物理意義函數(shù)的可導
4、性與連續(xù)性之間的關系平廂曲線的切線和法線導數(shù)和微分的四 則運算 基本初等函數(shù)的導數(shù) 復合函數(shù)、反函數(shù)、隱函數(shù)以及參 數(shù)方程所確定的函數(shù)的微分法高階導數(shù)一階微分形式的不變性 微分中值定理洛必達(LHospital)法則函數(shù)單調性的判別函 數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪 函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑*歐陽光明*創(chuàng)編2021.03.072021.03.07考試要求1. 理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù) 的幾何意義,會求平曲線的切線方程和法線方程,了解導數(shù)的物 理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之 間的關系.2.
5、掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本 初等函數(shù)的導數(shù)公式.了解微分的四則運算法則和一階微分形式的 不變性,會求函數(shù)的微分.3. 了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù).4. 會求分段函數(shù)的導數(shù),合求隱函數(shù)和由參數(shù)方程所確定的函 數(shù)以及反函數(shù)的導數(shù).5. 理解并會用羅爾(Rolle)定理.拉格朗日(Lagrange)中值 定理和泰勒(Taylo門定理,了解并會用柯西(Cauchy)中值定 理.6. 掌握用洛必達法則求未定式極限的方法.7. 理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調性和求函 數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應用.8. 會用導數(shù)判斷函數(shù)圖形的凹凸
6、性(注:在區(qū)間凹內,設函 數(shù)兇具有二階導數(shù).當 1時,兇的圖形是凹的;當時,國的圖形是凸的),會求函數(shù)圖形的拐點以及水平、*歐陽光明*創(chuàng)編2021.03.07*歐陽光明*創(chuàng)編鉛直和斜漸近線,會描繪函數(shù)的圖形.9. 了解曲率、曲率圓與曲率半徑的概念,合計算曲率和曲率半 徑.三、一元函數(shù)積分學考試內容原函數(shù)和不定積分的概念不定積分的基本性質基本積分公 式 定積分的概念和基本性質 定積分中值定理 積分上限的函數(shù) 及其導數(shù)牛頓-萊布尼茨(NewtonLeibniz)公式不定積分和定 積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和 簡單無理函數(shù)的積分反常(廣義)積分定積分的應用考試要求1. 理
7、解原函數(shù)的概念,理解不定積分和定積分的概念.2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質及 定積分中值定理,掌握換元積分法與分部積分法.3. 會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.4. 理解積分上限的函數(shù),合求它的導數(shù),掌握牛頓-萊布尼茨 公式.5. 了解反常積分的概念,會計算反常積分.6. 掌握用定積分表達和計算一些幾何量與物理量(平面圖形的廂積.平廂曲線的弧長、旋轉體的體積及側廁積、平行截面面積為 己知的立體體積.功、引力、壓力、質心、形心等)及函數(shù)的平均 值.四、向量代數(shù)和空間解析幾何考試內容向量的概念向量的線性運算向量的數(shù)量積和向量積向量 的混合積 兩向量垂直、
8、平行的條件 兩向量的夾角 向量的坐標 表達式及其運算單位向量方向數(shù)與方向余弦曲面方程和空間 曲線方程的概念平面方程直線方程平與平面、平面與直 線.直線與直線的夾角以及平行、垂直的條件 點到平面和點到直 線的距離 球面 柱廂 旋轉曲面 常用的二次曲面方程及其圖形 空間曲線的參數(shù)方程和一般方程空間曲線在坐標面上的投影曲線 方程考試要求1. 理解空間直角坐標系,理解向量的概念及其表示.2. 掌握向量的運算(線性運算.數(shù)量積.向量積、混合 積),了解兩個向量垂直、平行的條件.3. 理解單位向量、方向數(shù)與方向余弦.向量的坐標表達式, 掌握用坐標表達式進行向量運算的方法.4. 掌握平面方程和直線方程及其求
9、法.*歐陽光明*創(chuàng)編2021.03.075. 會求平面與平、平面與直線、直線與直線之間的夾角, 并會利用平面.直線的相互關系(平行、垂直、相交等)解決有 關冋題.6. 會求點到直線以及點到平廁的距離.7. 了解曲面方程和空間曲線方程的概念.8. 了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋 轉曲面的方程.9. 了解空間曲線的參數(shù)方程和一般方程.了解空間曲線在坐 標平面上的投影,并會求該投影曲線的方程.五、多元函數(shù)微分學考試內容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連 續(xù)的概念有界閉區(qū)域上多元連續(xù)函數(shù)的性質多元函數(shù)的偏導數(shù)和 全微分全微分存在的必要條件和充分條件多元復合函數(shù)、隱函
10、數(shù)的求導法二階偏導數(shù)方向導數(shù)和梯度 空間曲線的切線和法平廂曲廂的切平廂和法線二元函數(shù)的二階 泰勒公式多元函數(shù)的極值和條件極值多元函數(shù)的最大值、最小 值及其簡單應用考試要求1. 理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義.*歐陽光明*創(chuàng)編2021.03.072. 了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù) 函數(shù)的性質.3. 理解多元函數(shù)偏導數(shù)和全微分的概念,會求全微分,了解 全微分存在的必要條件和充分條件,了解全微分形式的不變性.4. 理解方向導數(shù)與梯度的概念,并掌握其計算方法.5. 掌握多元復合函數(shù)一階.二階偏導數(shù)的求法.6. 了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導數(shù).7. 了解空間
11、曲線的切線和法平廂及曲直的切平廂和法線的概 念,會求它們的方程.8. 了解二元函數(shù)的二階泰勒公式.9. 理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值 存在的必要條件,了解二元函數(shù)極值存在的充分條件,合求二元函 數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的 最大值和最小值,并會解決一些簡單的應用問題.六. 多元函數(shù)積分學考試內容二重積分與三重積分的概念、性質、計算和應用兩類曲線積分 的概念、性質及計算兩類曲線積分的關系格林(Green)公式 平廁曲線積分與路徑無關的條件 二元函數(shù)全微分的原函數(shù) 兩類 曲廂積分的概念.性質及計算 兩類曲積分的關系 高斯*歐陽光明*創(chuàng)編木歐陽光明
12、*創(chuàng)編2021.03.07(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及計 算曲線積分和曲直積分的應用考試要求1. 理解二重積分.三重積分的概念,了解重積分的性質,了 解二重積分的中值定理.2. 掌握二重積分的計算方法(直角坐標、極坐標),會計算 三重積分(直角坐標、柱面坐標、球面坐標)3. 理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩 類曲線積分的關系.4. 掌握計算兩類曲線積分的方法.5. 掌握格林公式并合運用平面曲線積分與路徑無關的條件, 會求二元函數(shù)全微分的原函數(shù).6. 了解兩類曲廁積分的概念、性質及兩類曲廂積分的關系, 掌握計算兩類曲廂積分的方法,掌握用高
13、斯公式計算曲面積分的方 法,并會用斯托克斯公式計算曲線積分.7. 了解散度與旋度的概念,并會計算.8. 會用重積分、曲線積分及曲積分求一些幾何量與物理量 (平廂圖形的廂積.體積.曲廁積.弧長、質量、質心.形心、轉動慣量、引力、功及流量等).七、無窮級數(shù)考試內容常數(shù)項級數(shù)的收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù) 的基本性質與收斂的必要條件 幾何級數(shù)與日級數(shù)及其收斂性 正 項級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的 絕對收斂與條件收斂 函數(shù)項級數(shù)的收斂域與和函數(shù)的概念 幕級 數(shù)及其收斂半徑.收斂區(qū)間(指開區(qū)間)和收斂域 幕級數(shù)的和函 數(shù) 幕級數(shù)在其收斂區(qū)間內的基本性質簡單幕級數(shù)的和函數(shù)
14、的求法 初等函數(shù)的幕級數(shù)展開式函數(shù)的傅里葉(FourieJ系數(shù)與傅里葉 級數(shù) 狄利克雷(Dirichlet)定理 函數(shù)在凹上的傅里葉級數(shù) 函數(shù)在S上的正弦級數(shù)和余弦級數(shù)考試要求1. 理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌 握級數(shù)的基本性質及收斂的必要條件.2. 掌握幾何級數(shù)與列級數(shù)的收斂與發(fā)散的條件.3. 掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根 值判別法.4. 掌握交錯級數(shù)的萊布尼茨判別法.5. 了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂 與收斂的關系.6. 了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念.7. 理解幕級數(shù)收斂半徑的概念,并掌握幕級數(shù)的收斂半徑、 收斂區(qū)間
15、及收斂域的求法.8. 了解幕級數(shù)在其收斂區(qū)間內的基本性質(和函數(shù)的連續(xù) 性、逐項求導和逐項積分),會求一些幕級數(shù)在收斂區(qū)間內的和函 數(shù),并會由此求出某些數(shù)項級數(shù)的和.9. 了解函數(shù)展開為泰勒級數(shù)的充分必要條件.10 掌握出,回,三,凹及凹的麥克勞林 (Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開為幕級 數(shù).11. 了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在 S上的函數(shù)展開為傅里葉級數(shù),會將定義在E上的函數(shù)展開為 正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和函數(shù)的表達式.八、常微分方程考試內容常微分方程的基本概念變量可分離的微分方程齊次微分方 程 一階線性微分方程 伯努利(Be
16、rnoulli)方程 全微分方程 可用簡單的變量代換求解的某些微分方程可降階的高階微分方程 線性微分方程解的性質及解的結構定理二階常系數(shù)齊次線性微分 方程 高于二階的某些常系數(shù)齊次線性微分方程 簡單的二階常系 數(shù)非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應用木歐陽光明*創(chuàng)編2021.03.07*歐陽光明*創(chuàng)編2021.03.07考試要求1. 了解微分方程及其階、解、通解、初始條件和特解等概 念.2. 掌握變量可分離的微分方程及一階線性微分方程的解法.3. 會解齊次微分方程、伯努利方程和全微分方程,會用簡單 的變量代換解某些微分方程.4. 會用降階法解下列形式的微分方程:廠一 ! 和
17、5. 理解線性微分方程解的性質及解的結構.6. 掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于 二階的常系數(shù)齊次線性微分方程.7. 會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及 它們的和與積的二階常系數(shù)非齊次線性微分方程.8. 會解歐拉方程.9. 會用微分方程解決一些簡單的應用冋題.線性代數(shù)、行列式考試內容行列式的概念和基本性質 行列式按行(列)展開定理*歐陽光明*創(chuàng)編2021.03.07木歐陽光明*創(chuàng)編2021.03.07考試要求1. 了解行列式的概念,掌握行列式的性質.2. 合應用行列式的性質和行列式按行(列)展開定理計算行 列式.二、矩陣考試內容矩陣的概念矩陣的線性運算矩陣
18、的乘法方陣的幕方陣 乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充 分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩 矩陣的等價分塊矩陣及其運算考試要求1. 理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、 三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質.2. 掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律, 了解方陣的幕與方陣乘積的行列式的性質.3. 理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充 分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4. 理解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等 價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆 矩陣的方法.
19、5. 了解分塊矩陣及其運算.三、向量考試內容向量的概念向量的線性組合與線性表示向量組的線性相關與 線性無關向量組的極大線性無關組等價向量組向量組的秩向量 組的秩與矩陣的秩之間的關系向量空間及其相關概念國維向量空 間的基變換和坐標變換 過渡矩陣向量的內積 線性無關向量組的 正交規(guī)范化方法規(guī)范正交基正交矩陣及其性質考試要求1. 理解維向量、向量的線性組合與線性表示的概念.2. 理解向量組線性相關、線性無關的概念,掌握向量組線性 相關、線性無關的有關性質及判別法.3. 理解向量組的極大線性無關組和向量組的秩的概念,會求 向量組的極大線性無關組及秩.4. 理解向量組等價的概念,理解矩陣的秩與其行(列)
20、向量 組的秩之間的關系.5. 了解弓維向量空間、子空間、基底.維數(shù)、坐標等概念.6. 了解基變換和坐標變換公式,會求過渡矩陣.7. 了解內積的概念,掌握線性無關向量組正交規(guī)范化的施密木歐陽光明*創(chuàng)編2021.03.07*歐陽光明*創(chuàng)編2021.03.07特(Schmidt)方法.8. 了解規(guī)范正交基、正交矩陣的彳既念以及它們的性質.四、線性方程組考試內容線性方程組的克拉默(Cramei)法則 齊次線性方程組有非零 解的充分必要條件非齊次線性方程組有解的充分必要條件線性方 程組解的性質和解的結構齊次線性方程組的基礎解系和通解解空 間非齊次線性方程組的通解考試要求1. 合用克拉默法則.2. 理解齊
21、次線性方程組有非零解的充分必要條件及非齊次線 性方程組有解的充分必要條件.3. 理解齊次線性方程組的基礎解系、通解及解空間的概念, 掌握齊次線性方程組的基礎解系和通解的求法.4. 理解非齊次線性方程組解的結構及通解的概念.5. 掌握用初等行變換求解線性方程組的方法.五、矩陣的特征值和特征向量考試內容矩陣的特征值和特征向量的概念、性質相似變換、相似矩陣*歐陽光明*創(chuàng)編2021.03.07木歐陽光明*創(chuàng)編2021.03.07的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣考試要求1. 理解矩陣的特征值和特征向量的概念及性質,合求矩陣的 特征值和
22、特征向量.2. 理解相似矩陣的概念、性質及矩陣可相似對角化的充分必 要條件,掌握將矩陣化為相似對角矩陣的方法.3. 掌握實對稱矩陣的特征值和特征向量的性質.六、二次型考試內容二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性 定理二次型的標準形和規(guī)范形用正交變換和配方法化二次型為標 準形二次型及其矩陣的正定性考試要求1. 掌握二次型及其矩陣表示,了解二次型秩的概念,了解合 同變換與合同矩陣的概念,了解二次型的標準形、規(guī)范形的概念以 及慣性定理.2. 掌握用正交變換化二次型為標準形的方法,會用配方法化 二次型為標準形.3. 理解正定二次型、正定矩陣的彳既念,并掌握其判別法.概率論與數(shù)理統(tǒng)計、隨機
23、事件和概率考試內容隨機事件與樣本空間事件的關系與運算完備事件組概率的概 念概率的基本性質古典型概率幾何型概率條件概率概率的基本 公式事件的獨立性獨立重復試驗考試要求1. 了解樣本空間(基本事件空間)的概念,理解隨機事件的 概念,掌握事件的關系及運算.2. 理解概率.條件概率的概念,掌握概率的基本性質,會計 算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘 法公式、全概率公式以及貝葉斯(Bayes)公式.3. 理解事件獨立性的概念,掌握用事件獨立性進行概率計 算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法.二、隨機變量及其分布考試內容隨機變量隨機變量分布函數(shù)的概念及其性質離散型
24、隨機變量 的概率分布連續(xù)型隨機變量的概率密度常見隨機變量的分布隨機變量函數(shù)的分布考試要求1. 理解隨機變量的概念,理解分布函數(shù) 耀的概念及性質,會計算與隨機變量相聯(lián)系的事件的概率.2. 理解離散型隨機變量及其概率分布的概念,掌握0-1分布、 二項分布同、幾何分布、超幾何分布、泊松(Poisson)分布回 及其應用.3. 了解泊松定理的結論和應用條件,會用泊松分布近似表示 二項分布.4. 理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布 回.正態(tài)分布國、指數(shù)分布及其應用,其中參數(shù)為的指數(shù)分布凹的概率密度為5. 會求隨機變量函數(shù)的分布.三、多維隨機變量及其分布考試內容多維隨機變量及其分布二維離散
25、型隨機變量的概率分布、邊 緣分布和條件分布 二維連續(xù)型隨機變量的概率密度.邊緣概率密 度和條件密度隨機變量的獨立性和不相關性常用二維隨機變量 的分布 兩個及兩個以上隨機變量簡單函數(shù)的分布考試要求1. 理解多維隨機變量的概念,理解多維隨機變量的分布的概 念和性質,理解二維離散型隨機變量的概率分布、邊緣分布和條件 分布,理解二維連續(xù)型隨機變量的概率密度、邊緣密度和條件密 度,會求與二維隨機變量相關事件的概率.2. 理解隨機變量的獨立性及不相關性的概念,掌握隨機變量 相互獨立的條件.3. 掌握二維均勻分布,了解二維正態(tài)分布 ri 的概 率密度,理解其中參數(shù)的概率意義.4. 合求兩個隨機變量簡單函數(shù)的分布,會求多個相互獨立隨 機變量簡單函數(shù)的分布.四、隨機變量的數(shù)字特征考試內容隨機變量的數(shù)學期望(均值).方差、標準差及其性質隨機 變量函數(shù)的數(shù)學期望矩、協(xié)方差、相關系數(shù)及其性質考試要求1. 理解隨機變量數(shù)字特征(數(shù)學期望.方差、標準差、矩、 協(xié)方差.相關系數(shù))的概念,會運用數(shù)字特征的基本性質,并
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國祛斑養(yǎng)顏保健品行業(yè)運行狀況及前景趨勢分析報告
- 2025-2030年中國電腦電源市場運行動態(tài)與營銷策略研究報告
- 邢臺學院《工程結構抗震設計原理》2023-2024學年第二學期期末試卷
- 湖北民族大學《數(shù)據(jù)庫原理及應用》2023-2024學年第二學期期末試卷
- 云南師范大學《電力系統(tǒng)分析》2023-2024學年第二學期期末試卷
- 武漢科技職業(yè)學院《動物試驗設計與統(tǒng)計分析》2023-2024學年第二學期期末試卷
- 四川藝術職業(yè)學院《針灸學(實驗)》2023-2024學年第二學期期末試卷
- 西安明德理工學院《產品包裝攝影》2023-2024學年第二學期期末試卷
- 高壓電工證考試題庫及答案(完整版)
- 精索靜脈曲張臨床路徑表單
- 2024年山東圣翰財貿職業(yè)學院單招綜合素質考試題庫含答案(綜合卷)
- 委外催收機構入圍項目投標技術方案(技術標)
- 肝與膽病辨證課件
- (正式版)JBT 2930-2024 低壓電器產品型號編制方法
- 工程機械作業(yè)安全培訓
- 部編版語文七年級下冊第三單元大單元整體教學設計
- 塑料件外觀檢驗規(guī)范
- 消費者行為學教案-消費群體與消費者行為教案
- 《經營模式淺談》課件
評論
0/150
提交評論