撫大畢業(yè)設計土木工程引用中英譯文_第1頁
撫大畢業(yè)設計土木工程引用中英譯文_第2頁
撫大畢業(yè)設計土木工程引用中英譯文_第3頁
撫大畢業(yè)設計土木工程引用中英譯文_第4頁
撫大畢業(yè)設計土木工程引用中英譯文_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、 畢業(yè)設計遼寧廣播電視大學開放教育試點土木工程專業(yè)(本科)中英文翻譯電大分校: 撫順電大 學生姓名: 錢振 學 號: 指導教師: 完成日期: 2013、6、20 附錄:抗側(cè)向荷載的結(jié)構(gòu)體系常用的結(jié)構(gòu)體系若已測出荷載量達數(shù)千萬磅重,那么在高層建筑設計中就沒有多少可以進行極其復雜的構(gòu)思余地了。確實,較好的高層建筑普遍具有構(gòu)思簡單、表現(xiàn)明晰的特點。這并不是說沒有進行宏觀構(gòu)思的余地。實際上,正是因為有了這種宏觀的構(gòu)思,新奇的高層建筑體系才得以發(fā)展,可能更重要的是:幾年以前才出現(xiàn)的一些新概念在今天的技術中已經(jīng)變得平常了。如果忽略一些與建筑材料密切相關的概念不談,高層建筑里最為常用的結(jié)構(gòu)體系便可分為如下幾

2、類:抗彎矩框架。支撐框架,包括偏心支撐框架。剪力墻,包括鋼板剪力墻。筒中框架。筒中筒結(jié)構(gòu)。核心交互結(jié)構(gòu)。框格體系或束筒體系。特別是由于最近趨向于更復雜的建筑形式,同時也需要增加剛度以抵抗幾力和地震力,大多數(shù)高層建筑都具有由框架、支撐構(gòu)架、剪力墻和相關體系相結(jié)合而構(gòu)成的體系。而且,就較高的建筑物而言,大多數(shù)都是由交互式構(gòu)件組成三維陳列。將這些構(gòu)件結(jié)合起來的方法正是高層建筑設計方法的本質(zhì)。其結(jié)合方式需要在考慮環(huán)境、功能和費用后再發(fā)展,以便提供促使建筑發(fā)展達到新高度的有效結(jié)構(gòu)。這并不是說富于想象力的結(jié)構(gòu)設計就能夠創(chuàng)造出偉大建筑。正相反,有許多例優(yōu)美的建筑僅得到結(jié)構(gòu)工程師適當?shù)闹С志捅粍?chuàng)造出來了,然而

3、,如果沒有天賦甚厚的建筑師的創(chuàng)造力的指導,那么,得以發(fā)展的就只能是好的結(jié)構(gòu),并非是偉大的建筑。無論如何,要想創(chuàng)造出高層建筑真正非凡的設計,兩者都需要最好的。雖然在文獻中通??梢砸姷接嘘P這七種體系的全面性討論,但是在這里還值得進一步討論。設計方法的本質(zhì)貫穿于整個討論。設計方法的本質(zhì)貫穿于整個討論中??箯澗乜蚣芸箯澗乜蚣芤苍S是低,中高度的建筑中常用的體系,它具有線性水平構(gòu)件和垂直構(gòu)件在接頭處基本剛接之特點。這種框架用作獨立的體系,或者和其他體系結(jié)合起來使用,以便提供所需要水平荷載抵抗力。對于較高的高層建筑,可能會發(fā)現(xiàn)該本系不宜作為獨立體系,這是因為在側(cè)向力的作用下難以調(diào)動足夠的剛度。我們可以利用

4、STRESS,STRUDL 或者其他大量合適的計算機程序進行結(jié)構(gòu)分析。所謂的門架法分析或懸臂法分析在當今的技術中無一席之地,由于柱梁節(jié)點固有柔性,并且由于初步設計應該力求突出體系的弱點,所以在初析中使用框架的中心距尺寸設計是司空慣的。當然,在設計的后期階段,實際地評價結(jié)點的變形很有必要。支撐框架支撐框架實際上剛度比抗彎矩框架強,在高層建筑中也得到更廣泛的應用。這種體系以其結(jié)點處鉸接或則接的線性水平構(gòu)件、垂直構(gòu)件和斜撐構(gòu)件而具特色,它通常與其他體系共同用于較高的建筑,并且作為一種獨立的體系用在低、中高度的建筑中。尤其引人關注的是,在強震區(qū)使用偏心支撐框架。此外,可以利用STRESS,STRUDL

5、,或一系列二維或三維計算機分析程序中的任何一種進行結(jié)構(gòu)分析。另外,初步分析中常用中心距尺寸。剪力墻剪力墻在加強結(jié)構(gòu)體系剛性的發(fā)展過程中又前進了一步。該體系的特點是具有相當薄的,通常是(而不總是)混凝土的構(gòu)件,這種構(gòu)件既可提供結(jié)構(gòu)強度,又可提供建筑物功能上的分隔。在高層建筑中,剪力墻體系趨向于具有相對大的高寬經(jīng),即與寬度相比,其高度偏大。由于基礎體系缺少應力,任何一種結(jié)構(gòu)構(gòu)件抗傾覆彎矩的能力都受到體系的寬度和構(gòu)件承受的重力荷載的限制。由于剪力墻寬度狹狹窄受限,所以需要以某種方式加以擴大,以便提從所需的抗傾覆能力。在窗戶需要量小的建筑物外墻中明顯地使用了這種確有所需要寬度的體系。鋼結(jié)構(gòu)剪力墻通常由

6、混凝土覆蓋層來加強以抵抗失穩(wěn),這在剪切荷載大的地方已得到應用。這種體系實際上比鋼支撐經(jīng)濟,對于使剪切荷載由位于地面正上方區(qū)域內(nèi)比較高的樓層向下移特別有效。這種體系還具有高延性之優(yōu)點,這種特性在強震區(qū)特別重要。由于這些墻內(nèi)必然出同一些大孔,使得剪力墻體系分析變得錯綜復雜??梢酝ㄟ^桁架模似法、有限元法,或者通過利用為考慮剪力墻的交互作用或扭轉(zhuǎn)功能設計的專門計處機程序進行初步分析。框架或支撐式筒體結(jié)構(gòu):框架或支撐式筒體最先應用于 IBM 公司在 Pittsburgh 的一幢辦公樓,隨后立即被應用于紐約雙子座的110 層世界貿(mào)易中心摩天大樓和其他的建筑中。這種系統(tǒng)有以下幾個顯著的特征:三維結(jié)構(gòu)、支撐式

7、結(jié)構(gòu)、或由剪力墻形成的一個性質(zhì)上差不多是圓柱體的閉合曲面,但又有任意的平面構(gòu)成。由于這些抵抗側(cè)向荷載的柱子差不多都被設置在整個系統(tǒng)的中心,所以整體的慣性得到提高,剛度也是很大的。在可能的情況下,通過三維概念的應用、二維的類比,我們可以進行筒體結(jié)構(gòu)的分析。不管應用那種方法,都必須考慮剪力滯后的影響。這種最先在航天器結(jié)構(gòu)中研究的剪力滯后出現(xiàn)后,對筒體結(jié)構(gòu)的剛度是一個很大的限制。這種觀念已經(jīng)影響了筒體結(jié)構(gòu)在 60 層以上建筑中的應用。設計者已經(jīng)開發(fā)出了很多的技術,用以減小剪力滯后的影響,這其中最有名的是桁架的應用。框架或支撐式筒體在 40 層或稍高的建筑中找到了自己的用武之地。除了一些美觀的考慮外,

8、桁架幾乎很少涉及與外墻聯(lián)系的每個建筑功能,而懸索一般設置在機械的地板上,這就令機械體系設計師們很不贊成。但是作為一個性價比較好的結(jié)構(gòu)體系,桁架能充分發(fā)揮它的性能,所以它會得到設計師們持續(xù)的支持。由于其最佳位置正取決于所提供的桁架的數(shù)量,因此很多研究已經(jīng)試圖完善這些構(gòu)件的位置。實驗表明:由于這種結(jié)構(gòu)體系的經(jīng)濟性并不十分受桁架位置的影響,所以這些桁架的位置主要取決于機械系統(tǒng)的完善,審美的要求,筒中筒結(jié)構(gòu):筒體結(jié)構(gòu)系統(tǒng)能使外墻中的柱具有靈活性,用以抵抗顛覆和剪切力?!巴仓型病边@個名字顧名思義就是在建筑物的核心承重部分又被包圍了第二層的一系列柱子,它們被當作是框架和支撐筒來使用。配置第二層柱的目的是增

9、強抗顛覆能力和增大側(cè)移剛度。這些筒體不是同樣的功能,也就是說,有些筒體是結(jié)構(gòu)的,而有些筒體是用來支撐的。在考慮這種筒體時,清楚的認識和區(qū)別變形的剪切和彎曲分量是很重要的,這源于對梁的對比分析。在結(jié)構(gòu)筒中,剪切構(gòu)件的偏角和柱、縱梁(例如:結(jié)構(gòu)筒中的網(wǎng)等)的彎曲有關,同時,彎曲構(gòu)件的偏角取決于柱子的軸心壓縮和延伸(例如:結(jié)構(gòu)筒的邊緣等)。在支撐筒中,剪切構(gòu)件的偏角和對角線的軸心變形有關,而彎曲構(gòu)件的偏角則與柱子的軸心壓縮和延伸有關。根據(jù)梁的對比分析,如果平面保持原形(例如:厚樓板),那么外層筒中柱的軸心壓力就會與中心筒柱的軸心壓力相差甚遠,而且穩(wěn)定的大于中心筒。但是在筒中筒結(jié)構(gòu)的設計中,當發(fā)展到極

10、限時,內(nèi)部軸心壓力會很高的,甚至遠遠大于外部的柱子。這種反常的現(xiàn)象是由于兩種體系中的剪切構(gòu)件的剛度不同。這很容易去理解,內(nèi)筒可以看成是一個支撐(或者說是剪切剛性的)筒,而外筒可以看成是一個結(jié)構(gòu)(或者說是剪切彈性的)筒。核心交互式結(jié)構(gòu):核心交互式結(jié)構(gòu)屬于兩個筒與某些形式的三維空間框架相配合的筒中筒特殊情況。事實上,這種體系常用于那種外筒剪切剛度為零的結(jié)構(gòu)。位于 Pittsburgh 的美國鋼鐵大樓證實了這種體系是能很好的工作的。在核心交互式結(jié)構(gòu)中,內(nèi)筒是一個支撐結(jié)構(gòu),外筒沒有任何剪切剛度,而且兩種結(jié)構(gòu)體系能通過一個空間結(jié)構(gòu)或“帽”式結(jié)構(gòu)共同起作用。需要指出的是,如果把外部的柱子看成是一種從“帽”

11、到基礎的直線體系,這將是不合適的;根據(jù)支撐核心的彈性曲線,這些柱子只發(fā)揮了剛度的 15%。同樣需要指出的是,內(nèi)柱中與側(cè)向力有關的軸向力沿筒高度由拉力變?yōu)閴毫Γ瑫r變化點位于筒高度的約5/8處。當然,外柱也傳遞相同的軸向力,這種軸向力低于作用在整個柱子高度的側(cè)向荷載,因為這個體系的剪切剛度接近于零。把內(nèi)外相連接的空間結(jié)構(gòu)、懸臂梁或桁架經(jīng)常遵照一些規(guī)范來布置。美國電話電報總局就是一個布置交互式構(gòu)件的生動例子。結(jié)構(gòu)體系長 59.7 米,寬 28.6 米,高 183.3 米。布置了兩個筒,每個筒的尺寸是 9.4 米×12.2 米,在長方向上有 27.4 米的間隔。在短方向上內(nèi)筒被支撐起來,但

12、是在長方向上沒有剪切剛度。環(huán)繞著建筑物布置了一個外筒。外筒是一個瞬時抵抗結(jié)構(gòu),但是在每個長方向的中心 15.2 米都沒有剪切剛度。在建筑的頂部布置了一個空間桁架構(gòu)成的“帽式”結(jié)構(gòu)。在建筑的底部布置了一個相似的空間桁架結(jié)構(gòu)。由于外筒的剪切剛度在建筑的底部接近零,整個建筑基本上由兩個鋼板筒來支持。框格體系或束筒體系結(jié)構(gòu):位于美國芝加哥的西爾斯大廈是箱式結(jié)構(gòu)的經(jīng)典之作,它由九個相互獨立的筒組成的一個集中筒。由于西爾斯大廈包括九個幾乎垂直的筒,而且筒在平面上無須相似,基本的結(jié)構(gòu)體系在不規(guī)則形狀的建筑中得到特別的應用。一些單個的筒高于建筑一點或很多是很常見的。事實上,這種體系的重要特征就在于它既有堅固的

13、一面,也有脆弱的一面。這種體系的脆弱,特別是在結(jié)構(gòu)筒中,與柱子的壓縮變形有很大的關系,柱子的壓縮變形有下式計算:=fL/E 對于那些層高為 3.66 米左右和平均壓力為 138MPa 的建筑,在荷載作用下每層柱子的壓縮變形為 15(12)/29000 或 1.9 毫米。在第 50 層柱子會壓縮 94 毫米,小于它未受壓的長度。這些柱子在 50 層的時候和 100 層的時候的變形是不一樣的,位于這兩種體系之間接近于邊緣的那些柱需要使這種不均勻的變形得以調(diào)解。主要的結(jié)構(gòu)工作都集中在布置中。在 Melbourne 的 Rialto 項目中,結(jié)構(gòu)工程師發(fā)現(xiàn)至少有一幢建筑,很有必要垂直預壓低高度的柱子,

14、以便使柱不均勻的變形差得以調(diào)解,調(diào)解的方法近似于后拉伸法,即較短的柱轉(zhuǎn)移重量到較高的鄰柱上。18Structural systems to resist lateral loadsCommonly Used Structural SystemsWith loads measured in tens of thousands kips, there is little room in the design of high-risebuildings for excessively complex thoughts. Indeed, the better high-rise buildings c

15、arry theuniversal traits of simplicity of thought and clarity of expression.It does not follow that there is no room for grand thoughts. Indeed, it is with such grandthoughts that the new family of high-rise buildings has evolved. Perhaps more important, the newconcepts of but a few years ago have b

16、ecome commonplace in today s technology.Omitting some concepts that are related strictly to the materials of construction, the mostcommonly used structural systems used in high-rise buildings can be categorized as follows:Moment-resisting frames.Braced frames, including eccentrically braced frames.S

17、hear walls, including steel plate shear walls.Tube-in-tube structures.Tube-in-tube structures.Core-interactive structures.Cellular or bundled-tube systems.Particularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from

18、wind and earthquake, most high-rise buildings havestructural systems built up of combinations of frames, braced bents, shear walls, and related systems.Further, for the taller buildings, the majorities are composed of interactive elements inthree-dimensional arrays.The method of combining these elem

19、ents is the very essence of the design process for high-risebuildings. These combinations need evolve in response to environmental, functional, and costconsiderations so as to provide efficient structures that provoke the architectural development tonew heights. This is not to say that imaginative s

20、tructural design can create great architecture. To the contrary, many examples of fine architecture have been created with only moderate supportfrom the structural engineer, while only fine structure, not great architecture, can be developedwithout the genius and the leadership of a talented archite

21、ct. In any event, the best of both is neededto formulate a truly extraordinary design of a high-rise building.While comprehensive discussions of these seven systems are generally available in theliterature, further discussion is warranted here .The essence of the design process is distributedthrough

22、out the discussion.Moment-Resisting FramesPerhaps the most commonly used system in low-to medium-rise buildings, themoment-resisting frame, is characterized by linear horizontal and vertical members connectedessentially rigidly at their joints. Such frames are used as a stand-alone system or in comb

23、inationwith other systems so as to provide the needed resistance to horizontal loads. In the taller ofhigh-rise buildings, the system is likely to be found inappropriate for a stand-alone system, thisbecause of the difficulty in mobilizing sufficient stiffness under lateral forces. Analysis can be a

24、ccomplished by STRESS, STRUDL, or a host of other appropriatecomputer programs; analysis by the so-called portal method of the cantilever method has no place in todays technology.Because of the intrinsic flexibility of the column/girder intersection, and because preliminary designs should aim to hig

25、hlight weaknesses of systems, it is not unusual to use center-to-centerdimensions for the frame in the preliminary analysis. Of course, in the latter phases of design, arealistic appraisal in-joint deformation is essential.Braced FramesThe braced frame, intrinsically stiffer than the moment resistin

26、g frame, finds also greaterapplication to higher-rise buildings. The system is characterized by linear horizontal, vertical, anddiagonal members, connected simply or rigidly at their joints. It is used commonly in conjunctionwith other systems for taller buildings and as a stand-alone system in low-

27、to medium-rise buildings.While the use of structural steel in braced frames is common, concrete frames are more likelyto be of the larger-scale variety. Of special interest in areas of high seismicity is the use of the eccentric braced frame.Again, analysis can be by STRESS, STRUDL, or any one of a

28、series of two or threedimensional analysis computer programs. And again, center-to-center dimensions are usedcommonly in the preliminary analysis.Shear wallsThe shear wall is yet another step forward along a progression of ever-stiffer structural systems. The system is characterized by relatively th

29、in, generally (but not always) concrete elements thatprovide both structural strength and separation between building functions.In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is,their height tends to be large compared to their width. Lacking tension in t

30、he foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by the element. Limited to a narrow overturning, One obvious use of the system, which does have the needed width, is in the exterior walls

31、of building,where the requirement for windows is kept small.Structural steel shear walls, generally stiffened against buckling by a concrete overlay, havefound application where shear loads are high. The system, intrinsically more economical than steel bracing, is particularly effective in carrying

32、shear loads down through the taller floors in the areas immediately above grade. The sys tem has the further advantage of having high ductility a featureof particular importance in areas of high seismicity.The analysis of shear wall systems is made complex because of the inevitable presence of large

33、openings through these walls. Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a proprietary computer program designed to consider the interaction,or coupling, of shear walls.Framed or Braced TubesThe concept of the framed or braced or braced tube erupt

34、ed into the technology with the IBMBuilding in Pittsburgh, but was followed immediately with the twin 110-story towers of the WorldTrade Center, New York and a number of other buildings .The system is characterized by threedimensional frames, braced frames, or shear walls, forming a closed surface m

35、ore or lesscylindrical in nature, but of nearly any plan configuration. Because those columns that resist lateral forces are placed as far as possible from the cancroids of the system, the overall moment of inertiais increased and stiffness is very high.The analysis of tubular structures is done usi

36、ng three-dimensional concepts, or by two-dimensional analogy, where possible, whichever method is used, it must be capable of accountingfor the effects of shear lag.The presence of shear lag, detected first in aircraft structures, is a serious limitation in thestiffness of framed tubes. The concept

37、has limited recent applications of framed tubes to the shear of 60 stories. Designers have developed various techniques for reducing the effects of shear lag, mostnoticeably the use of belt trusses. This system finds application in buildings perhaps 40stories andhigher. However, except for possible

38、aesthetic considerations, belt trusses interfere with nearlyevery building function associated with the outside wall; the trusses are placed often at mechanicalfloors, mush to the disapproval of the designers of the mechanical systems. Nevertheless, as a cost-effective structural system, the belt tr

39、uss works well and will likely find continued approval from designers. Numerous studies have sought to optimize the location of these trusses, with the optimum location very dependent on the number of trusses provided. Experience would indicate,however, that the location of these trusses is provided

40、 by the optimization of mechanical systems and by aesthetic considerations, as the economics of the structural system is not highly sensitive to belt truss location.Tube-in-Tube StructuresThe tubular framing system mobilizes every column in the exterior wall in resistingover-turning and shearing for

41、ces. The termtube-in-tubeis largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is used as an inner framed or braced tube. The purpose of the second tube is to increase resistance to over turning and to increase lateral stiffness.

42、 The tubes need not be of the same character; that is, one tube could be framed, while the other could be braced.In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy. In a fr

43、amed tube, the shear component of deflection is associated with the bending deformation of columns and girders (i.e, the webs of the framed tube) while the flexural component is associated with the axial shortening and lengthening of columns (i.e, the flanges of the framed tube). In a braced tube, t

44、he shear component of deflection is associated with the axial deformation of diagonals while the flexural component of deflection is associated with the axial shortening and lengthening of columns.Following beam analogy, if plane surfaces remain plane (i.e, the floor slabs),then axial stresses in th

45、e columns of the outer tube, being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube. However, in the tube-in-tube design, when optimized, the axial stresses in the inner ring of columns may be as high, or even higher, than the axial stresses in th

46、e outer ring. This seeming anomaly is associated with differences in the shearing component of stiffness between the two systems. This is easiest to under-stand where the inner tube is conceived as a braced (i.e, shear-stiff) tube while the outer tube is conceived as a framed (i.e, shear-flexible) t

47、ube.Core Interactive StructuresCore interactive structures are a special case of a tube-in-tube wherein the two tubes arecoupled together with some form of three-dimensional space frame. Indeed, the system is used often wherein the shear stiffness of the outer tube is zero. The United States Steel B

48、uilding, Pittsburgh, illustrates the system very well. Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and the two systems are coupled if they were considered as systems passing in a straight line from the “hat” structure. Note that the exterior columns would be improp

49、erly modeled if they were considered as systems passing in a straight line from the “hat” to the foundations; these columns are perhaps 15% stiffer as they follow the elastic curve of the braced core. Note also that the axial forces associated with the lateral forces in the inner columns change from

50、 tension to compression overthe height ofthetube,with thein flection point at about 5/8 of the height of the tube. The outer columns, of course, carry the same axial force under lateral load for the full height of the columns because the columns because the shear stiffness of the system is close to

51、zero. The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are located often at several levels in the building. The AT&T headquarters is an example of an astonishing array of interactive elements:The structural system is 94 ft (28.6m) wide, 196ft(5

52、9.7m) long, and 601ft (183.3m) high.Two inner tubes are provided, each 31ft(9.4m) by 40 ft (12.2m), centered 90 ft (27.4m) apart in the long direction of the building.The inner tubes are braced in the short direction, but with zero shear stiffness in the longdirection.A single outer tube is supplied, which encircles the building perimeter. The outer tube is a moment-resisting frame, but with zero shear stiffness for the center50ft (15.2m) of each of the long sides.A space-truss hat structure is provided at the top of the building.A similar space truss is located near the botto

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論