![安徽省阜陽市示范高中實(shí)驗(yàn)中學(xué)2019-2020學(xué)年高二數(shù)學(xué)文期末試卷含解析_第1頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/3/7d235acb-22aa-468b-a9f7-1496d8f30779/7d235acb-22aa-468b-a9f7-1496d8f307791.gif)
![安徽省阜陽市示范高中實(shí)驗(yàn)中學(xué)2019-2020學(xué)年高二數(shù)學(xué)文期末試卷含解析_第2頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/3/7d235acb-22aa-468b-a9f7-1496d8f30779/7d235acb-22aa-468b-a9f7-1496d8f307792.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、安徽省阜陽市示范高中實(shí)驗(yàn)中學(xué)2019-2020學(xué)年高二數(shù)學(xué)文期末試卷含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1. 中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”其中的“籌”原意是指孫子算經(jīng)中記載的算籌,古代是用算籌來進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推例如6613用算籌表示就是,則9117用算籌可表示為()a&
2、#160; b c d 參考答案:c【考點(diǎn)】f4:進(jìn)行簡(jiǎn)單的合情推理【分析】根據(jù)新定義直接判斷即可【解答】解:由題意各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,則9117 用算籌可表示為,故選:c2. 拋物線上橫坐標(biāo)為1的點(diǎn)到其焦點(diǎn)距離為 ( )abcd參考答案:b【知識(shí)點(diǎn)】拋物線【試題解析】因?yàn)樗?,故答案為:b3. 的內(nèi)角的對(duì)邊分別為,已知,則( )a2 b3
3、; c d參考答案:b在abc中,由余弦定理得:,即,整理得:.解得或(舍) 4. 已知直線y=x+1與曲線y=ln(x+a)相切,則a的值為()a1b2c1d2參考答案:b【考點(diǎn)】62:導(dǎo)數(shù)的幾何意義【分析】切點(diǎn)在切線上也在曲線上得到切點(diǎn)坐標(biāo)滿足兩方程;又曲線切點(diǎn)處的導(dǎo)數(shù)值是切線斜率得第三個(gè)方程【解答】解:設(shè)切點(diǎn)p(x0,y0),則y0=x0+1,y0=ln(x0+a),又x0+a=1y0=0,x0=1a=2故選項(xiàng)為b5. 函數(shù)f(x)=,若f(a)=
4、1,則a的值是()a1或2b1c2d1或2參考答案:c【考點(diǎn)】函數(shù)的值【分析】根據(jù)解析式對(duì)a分類討論,分別代入解析式化簡(jiǎn)f(a)=1求出a的值【解答】解:由題意得,f(x)=,當(dāng)a2時(shí),f(a)=3a2=1,則a=2,舍去;當(dāng)a2時(shí),f(a)=1,解得a=2或a=2(舍去),綜上可得,a的值是2,故選c6. 已知函數(shù)的定義域?yàn)?,則命題:“函數(shù)為奇函數(shù)”是命題:“,”的( )a充分不必要條件 b必要不充分條件c充要條件
5、 d既不充分也不必要條件參考答案:a7. 對(duì)任意的實(shí)數(shù),不等式恒成立,則實(shí)數(shù)的取值范圍是 ( )a b c d參考答案:b8. 若,則等于
6、60; ( ) a b c d參考答案:c略9. 若函數(shù)f(x)8x22kx7在1,5上為單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( )a. (,8b. 40,)c. (,840,)d. 8,40參考答案:c【分析】根據(jù)拋物線的開口方向和對(duì)稱軸與區(qū)間的關(guān)系得到的取值范圍【詳解】由題意得,函數(shù)圖象的對(duì)稱軸為,且拋物線的開
7、口向上,函數(shù)在1,5 上為單調(diào)函數(shù),或,解得或,實(shí)數(shù)k的取值范圍是故選c【點(diǎn)睛】二次函數(shù)在給定區(qū)間上的單調(diào)性依賴于兩個(gè)方面,即拋物線的開口方向和對(duì)稱軸與區(qū)間的位置關(guān)系,解決二次函數(shù)單調(diào)性的問題時(shí),要根據(jù)這兩個(gè)方面求解即可本題考查數(shù)形結(jié)合的思想方法在數(shù)學(xué)中的應(yīng)用10. 設(shè)f(x),g(x)分別是定義在r上的奇函數(shù)和偶函數(shù)當(dāng)x<0時(shí),f(x)g(x)f(x)g(x)>0,且g(3)0,則不等式f(x)g(x)<0的解集是 ()a(3,0)(3,)
8、160; b(3,0)(0,3)c(,3)(3,) d(,3)(0,3)參考答案:d略二、 填空題:本大題共7小題,每小題4分,共28分11. 36的所有正約數(shù)之和可按如下方法得到:因?yàn)?,所?6的所有正約數(shù)之和為,參照上述方法,可得100的所有正約數(shù)之和為_參考答案:217【分析】根據(jù)題意,類比36的所有正約數(shù)之和的方法,分析100的所有正約數(shù)之和為(1+2+22)(1+5+52),計(jì)算可得答案【詳解】根據(jù)題意,由
9、36的所有正約數(shù)之和的方法:100的所有正約數(shù)之和可按如下方法得到:因?yàn)?00=22×52,所以100的所有正約數(shù)之和為(1+2+22)(1+5+52)=217可求得100的所有正約數(shù)之和為217;故答案為:217.【點(diǎn)睛】本題考查簡(jiǎn)單的合情推理應(yīng)用,關(guān)鍵是認(rèn)真分析36的所有正約數(shù)之和的求法,并應(yīng)用到100的正約數(shù)之和的計(jì)算12. 已知全集,集合,則為 參考答案:13. 在邊長(zhǎng)為1的正方形abcd中,若e是cd的中點(diǎn),則=_參考答案:1略14. 若等邊的邊長(zhǎng)為,平面內(nèi)一點(diǎn)滿足,則
10、; . 參考答案:15. 已知直線l1:2xy10,l2:x3y60,則l1 到l2的角為 (用弧度表示)參考答案:16. 棱長(zhǎng)為2的四面體的體積為 參考答案:17. 有一球內(nèi)接圓錐,底面圓周和頂點(diǎn)均在球面上,其底面積為4,已知球的半徑r=3,則此圓錐的體積為 參考答案:或 【考點(diǎn)】球內(nèi)接
11、多面體【分析】求出圓錐的高,即可求出圓錐的體積【解答】解:由r2=4得圓錐底面半徑為r=2,如圖設(shè)oo1=x,則,圓錐的高或所以,圓錐的體積為或故答案為或【點(diǎn)評(píng)】本題考查圓錐的體積,考查學(xué)生的計(jì)算能力,正確求出圓錐的高是關(guān)鍵三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. (13分)已知函數(shù)f(x)=x2xaxlnx(ar),g(x)=()討論g(x)的單調(diào)區(qū)間與極值;()不論a取何值,函數(shù)f(x)與g(x)總交于一定點(diǎn),求證:兩函數(shù)在此點(diǎn)處的切線重合;()若a0,對(duì)于?x11,e,總?x2e,e2使得f(x1)g(x2)成立,求a的取值范圍參考答案:【考點(diǎn)
12、】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)研究函數(shù)的極值【分析】()求得g(x)的解析式和導(dǎo)數(shù),對(duì)a討論,求出單調(diào)區(qū)間和極值;()求出定點(diǎn)(1,0),求出f(x)、g(x)的導(dǎo)數(shù)和切線的斜率,即可得證;()當(dāng)a0時(shí),分別判斷f(x),g(x)的導(dǎo)數(shù)的符號(hào),得到單調(diào)性,可得f(x),g(x)的最大值,由f(x)max不大于g(x)max,解a的不等式,即可得到所求范圍【解答】解:()函數(shù)f(x)=x2xaxlnx(ar),g(x)=x1alnx,x0,可得g(x)=1,當(dāng)a0時(shí),g(x)0,g(x)在(0,+)遞增,無極值;當(dāng)a0時(shí),xa時(shí)g(x)0,g(x)在(a,+)遞增;0xa時(shí),g(x)0,g
13、(x)在(0,a)遞減,可得g(x)在x=a處取得極小值,且為a1alna,無極大值;()證明:由f(x)=x2xaxlnx,g(x)=x1alnx,x0,可得f(1)=g(1)=0,定點(diǎn)為(1,0),f(x)=2x1a(1+lnx),g(x)=1,可得f(1)=21a(1+ln1)=1a,g(1)=1a,即有切線的斜率相等,又它們均過定點(diǎn)(1,0),則兩函數(shù)在此點(diǎn)處的切線重合;()當(dāng)a0時(shí),由f(x)=2x1a(1+lnx)0在1,e恒成立,可得f(x)在1,e遞增,即有f(e)取得最大值e2eae;由g(x)=10在e,e2恒成立,可得g(x)在e,e2遞增,即有g(shù)(e2)取得最大值e21
14、2a;由對(duì)于?x11,e,總?x2e,e2使得f(x1)g(x2)成立,可得e2eaee212a,解得a0即a的范圍是,0)19. (14分)一個(gè)截面為拋物線形的舊河道(如圖1),河口寬米,河深2米,現(xiàn)要將其截面改造為等腰梯形(如圖2),要求河道深度不變,而且施工時(shí)只能挖土,不準(zhǔn)向河道填土() 建立恰當(dāng)?shù)闹苯亲鴺?biāo)系并求出拋物線弧的標(biāo)準(zhǔn)方程;() 試求當(dāng)截面梯形的下底(較長(zhǎng)的底邊)長(zhǎng)為多少米時(shí),才能使挖出的土最少? 參考答案:解:(1)如圖:以拋物線的頂點(diǎn)為原點(diǎn),中垂線為軸建立直角坐標(biāo)系則 設(shè)拋物線的方程為,將點(diǎn)代入得 所以拋物線弧ab方程為()(2)
15、解法一:設(shè)等腰梯形的腰與拋物線相切于 則過的切線的斜率為 所以切線的方程為:,即 令,得, 令,得,所以梯形面積 當(dāng)僅當(dāng),即時(shí),成立
16、 此時(shí)下底邊長(zhǎng)為 答:當(dāng)梯形的下底邊長(zhǎng)等于米時(shí),挖出的土最少 解法二:設(shè)等腰梯形的腰與拋物線相切于
17、; 則過的切線的斜率為 所以切線的方程為:,即
18、 運(yùn)用定積分計(jì)算拋物線與等腰梯形間的面積: -10分 當(dāng)僅當(dāng),即時(shí),成立,此時(shí)下底邊長(zhǎng)為 答:當(dāng)梯形的下底邊長(zhǎng)等于米時(shí),挖出的土最少 解法三:設(shè)等腰梯形上底(較短的邊)長(zhǎng)為米,則一腰過點(diǎn),可設(shè)此腰所在直線方程為, 聯(lián)立,得,
19、0; 令,得,或(舍), 故此腰所在直線方程為, 令,得, &
20、#160; 故等腰梯形的面積:當(dāng)且僅當(dāng),即時(shí),有 此時(shí),下底邊長(zhǎng) 答:當(dāng)梯形的下底邊長(zhǎng)等于米時(shí),挖出的土最少20. (本小題滿分10分)求不等式的解集參考答案:17解:當(dāng)x<時(shí),原不等式等價(jià)于,得<x<.當(dāng)x1時(shí),原不等式等價(jià)于,得x<0. 當(dāng)x>1時(shí),原不等式等價(jià)于得 由得原不等式的解集為x|<x<x|x<0x|<x<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 羅湖雨棚防水施工方案
- 長(zhǎng)沙豎向抗震支架施工方案
- 砼墊層施工方案
- 隧道橋梁改道方案
- 通信光纜機(jī)械頂管施工方案
- 路燈基礎(chǔ)安裝施工方案
- 自承式芯模施工方案
- 閘門維修施工方案
- 鐵塔基坑降水排水施工方案
- 預(yù)制梁上部結(jié)構(gòu)施工方案
- 醫(yī)院消防安全培訓(xùn)課件
- 質(zhì)保管理制度
- 《00541語言學(xué)概論》自考復(fù)習(xí)題庫(含答案)
- 2025年機(jī)關(guān)工會(huì)個(gè)人工作計(jì)劃
- 2024年全國(guó)卷新課標(biāo)1高考英語試題及答案
- 華為經(jīng)營(yíng)管理-華為激勵(lì)機(jī)制(6版)
- 江蘇省南京市、鹽城市2023-2024學(xué)年高三上學(xué)期期末調(diào)研測(cè)試+英語+ 含答案
- 2024護(hù)理不良事件分析
- JJF1664-2017溫度顯示儀校準(zhǔn)規(guī)范-(高清現(xiàn)行)
- 第二講共振理論、有機(jī)酸堿理論
- 高考英語聽力必備場(chǎng)景詞匯精選(必看)
評(píng)論
0/150
提交評(píng)論