版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、復(fù)變函數(shù)論試題庫(kù)梅一A111復(fù)變函數(shù)考試試題(一)1、 _.(為自然數(shù))2. _.3.函數(shù)的周期為_(kāi).4.設(shè),則的孤立奇點(diǎn)有_.5.冪級(jí)數(shù)的收斂半徑為_(kāi).6.若函數(shù)f(z)在整個(gè)平面上處處解析,則稱(chēng)它是_.7.若,則_.8._,其中n為自然數(shù).9. 的孤立奇點(diǎn)為_(kāi) .10.若是的極點(diǎn),則.三.計(jì)算題(40分):1. 設(shè),求在內(nèi)的羅朗展式.2. 3. 設(shè),其中,試求4. 求復(fù)數(shù)的實(shí)部與虛部.四. 證明題.(20分)1. 函數(shù)在區(qū)域內(nèi)解析. 證明:如果在內(nèi)為常數(shù),那么它在內(nèi)為常數(shù).2. 試證: 在割去線段的平面內(nèi)能分出兩個(gè)單值解析分支, 并求出支割線上岸取正值的那支在的值.復(fù)變函數(shù)考試試題(二)二
2、. 填空題. (20分)1. 設(shè),則2.設(shè),則_.3. _.(為自然數(shù)) 4. 冪級(jí)數(shù)的收斂半徑為_(kāi) .5. 若z0是f(z)的m階零點(diǎn)且m>0,則z0是的_零點(diǎn).6. 函數(shù)ez的周期為_(kāi). 7. 方程在單位圓內(nèi)的零點(diǎn)個(gè)數(shù)為_(kāi).8. 設(shè),則的孤立奇點(diǎn)有_.9. 函數(shù)的不解析點(diǎn)之集為_(kāi).10. .三. 計(jì)算題. (40分)1. 求函數(shù)的冪級(jí)數(shù)展開(kāi)式.2. 在復(fù)平面上取上半虛軸作割線. 試在所得的區(qū)域內(nèi)取定函數(shù)在正實(shí)軸取正實(shí)值的一個(gè)解析分支,并求它在上半虛軸左沿的點(diǎn)及右沿的點(diǎn)處的值.3. 計(jì)算積分:,積分路徑為(1)單位圓()的右半圓.4. 求 .四. 證明題. (20分)1. 設(shè)函數(shù)f(z
3、)在區(qū)域D內(nèi)解析,試證:f(z)在D內(nèi)為常數(shù)的充要條件是在D內(nèi)解析.2. 試用儒歇定理證明代數(shù)基本定理.復(fù)變函數(shù)考試試題(三)二. 填空題. (20分)1. 設(shè),則f(z)的定義域?yàn)開(kāi).2. 函數(shù)ez的周期為_(kāi).3. 若,則_.4. _.5. _.(為自然數(shù))6. 冪級(jí)數(shù)的收斂半徑為_(kāi).7. 設(shè),則f(z)的孤立奇點(diǎn)有_.8. 設(shè),則.9. 若是的極點(diǎn),則.10. .三. 計(jì)算題. (40分)1. 將函數(shù)在圓環(huán)域內(nèi)展為L(zhǎng)aurent級(jí)數(shù).2. 試求冪級(jí)數(shù)的收斂半徑.3. 算下列積分:,其中是. 4. 求在|z|<1內(nèi)根的個(gè)數(shù).四. 證明題. (20分)1. 函數(shù)在區(qū)域內(nèi)解析. 證明:如果
4、在內(nèi)為常數(shù),那么它在內(nèi)為常數(shù).2. 設(shè)是一整函數(shù),并且假定存在著一個(gè)正整數(shù)n,以及兩個(gè)正數(shù)R及M,使得當(dāng)時(shí),證明是一個(gè)至多n次的多項(xiàng)式或一常數(shù)。復(fù)變函數(shù)考試試題(四)二. 填空題. (20分)1. 設(shè),則.2. 若,則_.3. 函數(shù)ez的周期為_(kāi).4. 函數(shù)的冪級(jí)數(shù)展開(kāi)式為_(kāi)5. 若函數(shù)f(z)在復(fù)平面上處處解析,則稱(chēng)它是_.6. 若函數(shù)f(z)在區(qū)域D內(nèi)除去有限個(gè)極點(diǎn)之外處處解析,則稱(chēng)它是D內(nèi)的_.7. 設(shè),則.8. 的孤立奇點(diǎn)為_(kāi).9. 若是的極點(diǎn),則.10. _.三. 計(jì)算題. (40分)1. 解方程.2. 設(shè),求3. . 4. 函數(shù)有哪些奇點(diǎn)?各屬何類(lèi)型(若是極點(diǎn),指明它的階數(shù)).四.
5、 證明題. (20分)1. 證明:若函數(shù)在上半平面解析,則函數(shù)在下半平面解析.2. 證明方程在內(nèi)僅有3個(gè)根.復(fù)變函數(shù)考試試題(五)二. 填空題.(20分)1. 設(shè),則.2. 當(dāng)時(shí),為實(shí)數(shù).3. 設(shè),則.4. 的周期為_(kāi).5. 設(shè),則.6. .7. 若函數(shù)f(z)在區(qū)域D內(nèi)除去有限個(gè)極點(diǎn)之外處處解析,則稱(chēng)它是D內(nèi)的_。8. 函數(shù)的冪級(jí)數(shù)展開(kāi)式為_(kāi).9. 的孤立奇點(diǎn)為_(kāi).10. 設(shè)C是以為a心,r為半徑的圓周,則.(為自然數(shù))三. 計(jì)算題. (40分)1. 求復(fù)數(shù)的實(shí)部與虛部.2. 計(jì)算積分:,在這里L(fēng)表示連接原點(diǎn)到的直線段.3. 求積分:,其中0<a<1.4. 應(yīng)用儒歇定理求方程,在
6、|z|<1內(nèi)根的個(gè)數(shù),在這里在上解析,并且.四. 證明題. (20分)1. 證明函數(shù)除去在外,處處不可微.2. 設(shè)是一整函數(shù),并且假定存在著一個(gè)正整數(shù)n,以及兩個(gè)數(shù)R及M,使得當(dāng)時(shí),證明:是一個(gè)至多n次的多項(xiàng)式或一常數(shù).復(fù)變函數(shù)考試試題(六)1.一、 填空題(20分)1. 若,則_.2. 設(shè),則的定義域?yàn)開(kāi).3. 函數(shù)的周期為_(kāi).4. _.5. 冪級(jí)數(shù)的收斂半徑為_(kāi).6. 若是的階零點(diǎn)且,則是的_零點(diǎn).7. 若函數(shù)在整個(gè)復(fù)平面處處解析,則稱(chēng)它是_.8. 函數(shù)的不解析點(diǎn)之集為_(kāi).9. 方程在單位圓內(nèi)的零點(diǎn)個(gè)數(shù)為_(kāi).10. 公式稱(chēng)為_(kāi).二、 計(jì)算題(30分)1、.2、設(shè),其中,試求.3、設(shè),
7、求.4、求函數(shù)在內(nèi)的羅朗展式.5、求復(fù)數(shù)的實(shí)部與虛部.6、求的值.三、 證明題(20分)1、 方程在單位圓內(nèi)的根的個(gè)數(shù)為6.2、 若函數(shù)在區(qū)域內(nèi)解析,等于常數(shù),則在恒等于常數(shù).3、 若是的階零點(diǎn),則是的階極點(diǎn).計(jì)算下列積分(分)(1) ; (2) 計(jì)算積分(分)求下列冪級(jí)數(shù)的收斂半徑(分)(1);(2)設(shè)為復(fù)平面上的解析函數(shù),試確定,的值(分)三、證明題設(shè)函數(shù)在區(qū)域內(nèi)解析,在區(qū)域內(nèi)也解析,證明必為常數(shù)(分)試證明的軌跡是一直線,其中為復(fù)常數(shù),為實(shí)常數(shù)(分)試卷一至十四參考答案復(fù)變函數(shù)考試試題(一)參考答案二填空題1. ; 2. 1; 3. ,; 4. ; 5. 16. 整函數(shù); 7. ; 8.
8、 ; 9. 0; 10. .三計(jì)算題.1. 解 因?yàn)?所以 .2. 解 因?yàn)?,.所以.3. 解 令, 則它在平面解析, 由柯西公式有在內(nèi), . 所以.4. 解 令, 則 . 故 , .四. 證明題.1. 證明 設(shè)在內(nèi). 令. 兩邊分別對(duì)求偏導(dǎo)數(shù), 得 因?yàn)楹瘮?shù)在內(nèi)解析, 所以. 代入 (2) 則上述方程組變?yōu)? 消去得, .1) 若, 則 為常數(shù).2) 若, 由方程 (1) (2) 及 方程有 , .所以. (為常數(shù)).所以為常數(shù).2. 證明的支點(diǎn)為. 于是割去線段的平面內(nèi)變點(diǎn)就不可能單繞0或1轉(zhuǎn)一周, 故能分出兩個(gè)單值解析分支. 由于當(dāng)從支割線上岸一點(diǎn)出發(fā),連續(xù)變動(dòng)到 時(shí), 只有的幅角增加
9、. 所以的幅角共增加. 由已知所取分支在支割線上岸取正值, 于是可認(rèn)為該分支在上岸之幅角為0, 因而此分支在的幅角為, 故.復(fù)變函數(shù)考試試題(二)參考答案二. 填空題1.1, ; 2. ; 3. ; 4. 1; 5. .6. ,. 7. 0; 8. ; 9. ; 10. 0.三. 計(jì)算題1. 解 .2. 解 令. 則. 又因?yàn)樵谡龑?shí)軸去正實(shí)值,所以. 所以.3. 單位圓的右半圓周為, . 所以.4. 解=0.四. 證明題.1. 證明 (必要性) 令,則. (為實(shí)常數(shù)). 令. 則. 即滿(mǎn)足, 且連續(xù), 故在內(nèi)解析.(充分性) 令, 則 , 因?yàn)榕c在內(nèi)解析, 所以, 且.比較等式兩邊得 . 從而
10、在內(nèi)均為常數(shù),故在內(nèi)為常數(shù).2. 即要證“任一 次方程 有且只有 個(gè)根”. 證明 令, 取, 當(dāng)在上時(shí), 有 . .由儒歇定理知在圓 內(nèi), 方程 與 有相同個(gè)數(shù)的根. 而 在 內(nèi)有一個(gè) 重根 . 因此次方程在 內(nèi)有 個(gè)根.復(fù)變函數(shù)考試試題(三)參考答案二.填空題.1.; 2. ; 3. ; 4. 1; 5. ;6. 1; 7. ; 8. ; 9. ; 10. .三. 計(jì)算題.1. 解 .2. 解 . 所以收斂半徑為.3. 解 令 , 則 .故原式.4. 解 令 , . 則在 上均解析, 且, 故由儒歇定理有 . 即在 內(nèi), 方程只有一個(gè)根.四. 證明題.1. 證明 證明 設(shè)在內(nèi). 令. 兩邊分
11、別對(duì)求偏導(dǎo)數(shù), 得 因?yàn)楹瘮?shù)在內(nèi)解析, 所以. 代入 (2) 則上述方程組變?yōu)? 消去得, .1) , 則 為常數(shù).2) 若, 由方程 (1) (2) 及 方程有 , .所以. (為常數(shù)).所以為常數(shù).2. 證明 取 , 則對(duì)一切正整數(shù) 時(shí), . 于是由的任意性知對(duì)一切均有. 故, 即是一個(gè)至多次多項(xiàng)式或常數(shù). 復(fù)變函數(shù)考試試題(四)參考答案.二. 填空題.1. , ; 2. ; 3. ; 4. ; 5. 整函數(shù);6. 亞純函數(shù); 7. 0; 8. ; 9. ; 10. .三. 計(jì)算題.1. 2. 解 , . 故原式.3. 解 原式.4. 解 =,令,得,而 為可去奇點(diǎn) 當(dāng)時(shí), 而 為一階極點(diǎn)
12、.四. 證明題.1. 證明 設(shè), 在下半平面內(nèi)任取一點(diǎn), 是下半平面內(nèi)異于的點(diǎn), 考慮 .而, 在上半平面內(nèi), 已知在上半平面解析, 因此, 從而在下半平面內(nèi)解析.2. 證明 令, , 則與在全平面解析, 且在上, ,故在內(nèi).在上, , 故在內(nèi).所以在內(nèi)僅有三個(gè)零點(diǎn), 即原方程在內(nèi)僅有三個(gè)根.復(fù)變函數(shù)考試試題(五)參考答案一. 判斷題.1 ×× 6× × 10.二. 填空題.1.2, , ; 2. ; 3. , ; 4. ; 5. 0; 6. 0; 7. 亞純函數(shù); 8. ; 9. 0; 10. . 三. 計(jì)算題.1. 解 令, 則 . 故 , .2.
13、解 連接原點(diǎn)及的直線段的參數(shù)方程為 , 故.3. 令, 則. 當(dāng)時(shí), 故, 且在圓內(nèi)只以為一級(jí)極點(diǎn), 在上無(wú)奇點(diǎn), 故, 由殘數(shù)定理有.4. 解 令 則在內(nèi)解析, 且在上, , 所以在內(nèi), , 即原方程在 內(nèi)只有一個(gè)根.四. 證明題.1. 證明 因?yàn)? 故. 這四個(gè)偏導(dǎo)數(shù)在平面上處處連續(xù), 但只在處滿(mǎn)足條件, 故只在除了外處處不可微.2. 證明 取 , 則對(duì)一切正整數(shù) 時(shí), . 于是由的任意性知對(duì)一切均有. 故, 即是一個(gè)至多次多項(xiàng)式或常數(shù).復(fù)變函數(shù)考試試題(六)參考答案二、填空題:1. 2. 3. 4. 1 5. 1 6. 階 7. 整函數(shù) 8. 9. 0 10. 歐拉公式 三、計(jì)算題:1. 解:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年早教中心特色課程開(kāi)發(fā)與場(chǎng)地租賃合作合同3篇
- 2024年度地下停車(chē)位租賃與停車(chē)場(chǎng)設(shè)備維修服務(wù)合同范本3篇
- 2024年盾構(gòu)操作工職業(yè)技能競(jìng)賽理論考試題庫(kù)(含答案)
- 《不自由毋寧死》課件
- 《云計(jì)算大會(huì)分享》課件
- 設(shè)備硬件維修合同范例
- 《歐洲債務(wù)危機(jī)下》課件
- 中醫(yī)門(mén)診加盟合同范例
- 美甲店合作分成合同范例
- 酒吧房屋合同范例
- 北京市高校教師崗前培訓(xùn)復(fù)習(xí)資料
- 小學(xué)數(shù)學(xué)校本教材(共51頁(yè))
- 高爾夫簡(jiǎn)介及球場(chǎng)建造方案
- Q∕GDW 11311-2021 氣體絕緣金屬封閉開(kāi)關(guān)設(shè)備特高頻法局部放電在線監(jiān)測(cè)裝置技術(shù)規(guī)范
- [玻璃幕墻施工方案]隱框玻璃幕墻施工方案
- 中聯(lián)QY100T汽車(chē)吊主臂起重性能表
- 支付寶手持承諾函
- 國(guó)航因私免折票系統(tǒng)
- 三相自耦變壓器設(shè)計(jì)模版
- 生產(chǎn)安全事故的應(yīng)急救援預(yù)案
- 二面角的求法---三垂線法
評(píng)論
0/150
提交評(píng)論