11年與10年考研數(shù)學(xué)大綱變化對(duì)比表數(shù)農(nóng)_第1頁(yè)
11年與10年考研數(shù)學(xué)大綱變化對(duì)比表數(shù)農(nóng)_第2頁(yè)
11年與10年考研數(shù)學(xué)大綱變化對(duì)比表數(shù)農(nóng)_第3頁(yè)
11年與10年考研數(shù)學(xué)大綱變化對(duì)比表數(shù)農(nóng)_第4頁(yè)
11年與10年考研數(shù)學(xué)大綱變化對(duì)比表數(shù)農(nóng)_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、海文考研權(quán)威發(fā)布2011考研大綱變化!2011年與2010年農(nóng)學(xué)門類聯(lián)考考試大綱(數(shù)學(xué))變化對(duì)比表數(shù)農(nóng)章節(jié)2010年農(nóng)學(xué)門類聯(lián)考數(shù)學(xué)考查范圍2011年農(nóng)學(xué)門類聯(lián)考數(shù)學(xué)考查范圍變化對(duì)比高等數(shù)學(xué)一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:,函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等

2、函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1. 理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問(wèn)題中的函數(shù)關(guān)系2. 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3. 理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4. 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念5. 了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念6. 了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法7. 理解無(wú)窮小量的概念和基本性質(zhì),掌握無(wú)窮小量的比較方法,了解無(wú)窮大量的概念及其與無(wú)窮小量的關(guān)系8. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型9. 了

3、解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)考試內(nèi)容函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:,函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1. 理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立

4、應(yīng)用問(wèn)題中的函數(shù)關(guān)系2. 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3. 理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4. 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念5. 了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念6. 了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法7. 理解無(wú)窮小量的概念和基本性質(zhì),掌握無(wú)窮小量的比較方法,了解無(wú)窮大量的概念及其與無(wú)窮小量的關(guān)系8. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型9. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理

5、、介值定理),并會(huì)應(yīng)用這些性質(zhì)對(duì)比:無(wú)變化本章的重點(diǎn)內(nèi)容之一是極限,考生不僅要準(zhǔn)確的理解極限的概念和極限存在的充要條件,而且還要能正確求出各種極限,由于篇幅所限,有關(guān)求極限的各種方法和本章的其它考點(diǎn),詳見(jiàn)由高等教育出版社出版的2011年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)第二部分,第一篇,第一章函數(shù)、極限、連續(xù)。二、一元函數(shù)微分學(xué)考試內(nèi)容導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)和隱函數(shù)的微分法 高階導(dǎo)數(shù) 微分中值定理 洛必達(dá)(LHospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函

6、數(shù)圖形的凹凸性、拐點(diǎn)及漸近線 函數(shù)的最大值與最小值考試要求1理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程2掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)的導(dǎo)數(shù)3了解高階導(dǎo)數(shù)的概念,掌握二階導(dǎo)數(shù)的求法4了解微分的概念以及導(dǎo)數(shù)與微分之間的關(guān)系,會(huì)求函數(shù)的微分5理解羅爾(Rolle)定理和拉格朗日(Lagrange)中值定理,掌握這兩個(gè)定理的簡(jiǎn)單應(yīng)用6會(huì)用洛必達(dá)法則求極限7掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應(yīng)用8會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間

7、內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)當(dāng)時(shí),的圖形是凹的;當(dāng)時(shí),的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線(水平、鉛直漸近線)考試內(nèi)容導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)和隱函數(shù)的微分法 高階導(dǎo)數(shù) 微分中值定理 洛必達(dá)(LHospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線 函數(shù)的最大值與最小值考試要求1理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程2掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)

8、的導(dǎo)數(shù),會(huì)求隱函數(shù)的導(dǎo)數(shù)3了解高階導(dǎo)數(shù)的概念,掌握二階導(dǎo)數(shù)的求法4了解微分的概念以及導(dǎo)數(shù)與微分之間的關(guān)系,會(huì)求函數(shù)的微分5理解羅爾(Rolle)定理和拉格朗日(Lagrange)中值定理,掌握這兩個(gè)定理的簡(jiǎn)單應(yīng)用6會(huì)用洛必達(dá)法則求極限7掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應(yīng)用8會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)當(dāng)時(shí),的圖形是凹的;當(dāng)時(shí),的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線(水平、鉛直漸近線)對(duì)比: 無(wú)變化 一元函數(shù)微分學(xué)在微積分中占有極其重要的位置,而且本章具有內(nèi)容多,影響深遠(yuǎn)的特點(diǎn),這些內(nèi)容在后面絕大多數(shù)章節(jié)中都

9、會(huì)涉及到。所以考生要給與足夠的重視,有關(guān)本章重難考點(diǎn)的深度解析和可命題角度,詳見(jiàn)由高等教育出版社出版的2011年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)第二部分,第一篇,第二章。三、一元函數(shù)積分學(xué)考試內(nèi)容原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)與其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分方法與分部積分法 反常(廣義)積分 定積分的應(yīng)用考試要求1理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法和分部積分法2了解定積分的概念和基本性

10、質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式以及定積分的換元積分法與分部積分法3會(huì)利用定積分計(jì)算平面圖形的面積和旋轉(zhuǎn)體的體積4了解無(wú)窮區(qū)間上的反常積分的概念,會(huì)計(jì)算無(wú)窮區(qū)間上的反常積分考試內(nèi)容原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)與其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分方法與分部積分法 反常(廣義)積分 定積分的應(yīng)用考試要求1理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法和分部積分法2了解定積分

11、的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式以及定積分的換元積分法與分部積分法3會(huì)利用定積分計(jì)算平面圖形的面積和旋轉(zhuǎn)體的體積4了解無(wú)窮區(qū)間上的反常積分的概念,會(huì)計(jì)算無(wú)窮區(qū)間上的反常積分對(duì)比: 無(wú)變化一元函數(shù)積分學(xué)的重點(diǎn)內(nèi)容可分為概念部分,運(yùn)算部分,理論證明部分以及應(yīng)用部分。對(duì)于每一部分的深度解析和可命題角度,詳見(jiàn)由高等教育出版社出版的2011年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)第二部分,第一篇,第三章 一元函數(shù)積分學(xué)。四、多元函數(shù)微積分學(xué)考試內(nèi)容多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 多元函數(shù)偏導(dǎo)數(shù)的概念

12、與計(jì)算 多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法 二階偏導(dǎo)數(shù) 全微分 多元函數(shù)的極值和條件極值 二重積分的概念、基本性質(zhì)和計(jì)算 考試要求1了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念3了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)4了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件5了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo))考試內(nèi)容多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算 多元復(fù)合函數(shù)的求導(dǎo)

13、法與隱函數(shù)求導(dǎo)法 二階偏導(dǎo)數(shù) 全微分 多元函數(shù)的極值和條件極值 二重積分的概念、基本性質(zhì)和計(jì)算 考試要求1了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念3了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)4了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件5了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo))對(duì)比:無(wú)變化 本章重難考點(diǎn)的深度解析與可命題角度詳見(jiàn)2011年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)第二部分,第一篇。五、常微分方程

14、考試內(nèi)容 常微分方程的基本概念 變量可分離的微分方程 一階線性微分方程考試要求1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程和一階線性微分方程的求解方法考試內(nèi)容 常微分方程的基本概念 變量可分離的微分方程 一階線性微分方程考試要求1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程和一階線性微分方程的求解方法對(duì)比:無(wú)變化 線性代數(shù)一、行列式考試內(nèi)容行列式的概念和基本性質(zhì) 行列式按行(列)展開定理考試要求1了解行列式的概念,掌握行列式的性質(zhì)2會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式考試內(nèi)容行列式的概念和基本性質(zhì) 行列式按行(

15、列)展開定理考試要求1了解行列式的概念,掌握行列式的性質(zhì)2會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式對(duì)比:無(wú)變化二、矩陣考試內(nèi)容矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價(jià) 考試要求1理解矩陣的概念,了解單位矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì)2掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)3理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,了解伴

16、隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣4了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法考試內(nèi)容矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價(jià) 考試要求1理解矩陣的概念,了解單位矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì)2掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)3理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件

17、,了解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣4了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法對(duì)比:無(wú)變化 矩陣是數(shù)學(xué)中重要的基本概念之一,本章要求在理解矩陣相關(guān)概念的基礎(chǔ)上,掌握矩陣的運(yùn)算,由于篇幅所限,本章重難考點(diǎn)的深度解析與可命題角度詳見(jiàn)2011年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)第二部分,第二篇。三、向量考試內(nèi)容向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無(wú)關(guān) 向量組的極大線性無(wú)關(guān)組 等價(jià)向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 考試要求1了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則2理解向

18、量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法3理解向量組的極大線性無(wú)關(guān)組和秩的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩4了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系考試內(nèi)容向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無(wú)關(guān) 向量組的極大線性無(wú)關(guān)組 等價(jià)向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 考試要求1了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則2理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法3理解向量組的極大線性無(wú)關(guān)組和秩的概念,會(huì)

19、求向量組的極大線性無(wú)關(guān)組及秩4了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系對(duì)比:無(wú)變化 向量是線性代數(shù)的核心內(nèi)容之一,本章要求在理解線性相關(guān)性的基礎(chǔ)上,掌握判斷向量線性相關(guān)性的各中方法,與此同時(shí)本章其它重難考點(diǎn)的深度解析與可命題角度詳見(jiàn)2011年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)第二部分,第二篇。四、線性方程組考試內(nèi)容線性方程組的克萊姆(Cramer)法則 線性方程組有解和無(wú)解的判定 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的解與相應(yīng)的齊次線性方程組的解之間的關(guān)系 非齊次線性方程組的通解考試要求1會(huì)用克萊姆法則解線性方程組2掌握非齊次線性方程組有解

20、和無(wú)解的判定方法3理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法4了解非齊次線性方程組解的結(jié)構(gòu)及通解的概念5掌握用初等行變換求解線性方程組的方法考試內(nèi)容線性方程組的克萊姆(Cramer)法則 線性方程組有解和無(wú)解的判定 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的解與相應(yīng)的齊次線性方程組的解之間的關(guān)系 非齊次線性方程組的通解考試要求1會(huì)用克萊姆法則解線性方程組2掌握非齊次線性方程組有解和無(wú)解的判定方法3理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法4了解非齊次線性方程組的結(jié)構(gòu)及通解的概念5掌握用初等行變換求解線性方程組的方法對(duì)比

21、:無(wú)變化五、矩陣的特征值和特征向量考試內(nèi)容矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣 實(shí)對(duì)稱矩陣的特征值、特征向量及其相似對(duì)角矩陣考試要求1理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法2了解矩陣相似的概念和相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,會(huì)將矩陣化為相似對(duì)角矩陣3了解實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì)考試內(nèi)容矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣 實(shí)對(duì)稱矩陣的特征值、特征向量及其相似對(duì)角矩陣考試要求1理解矩陣

22、的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法2了解矩陣相似的概念和相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,會(huì)將矩陣化為相似對(duì)角矩陣3了解實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì)對(duì)比:無(wú)變化概率論與數(shù)理統(tǒng)計(jì)一、隨機(jī)事件和概率考試內(nèi)容隨機(jī)事件與樣本空間 事件的關(guān)系與運(yùn)算 概率的基本性質(zhì) 古典型概率 條件概率 概率的基本公式 事件的獨(dú)立性 獨(dú)立重復(fù)試驗(yàn) 考試要求1了解樣本空間的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系與運(yùn)算2理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes

23、)公式3理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法考試內(nèi)容隨機(jī)事件與樣本空間 事件的關(guān)系與運(yùn)算 概率的基本性質(zhì) 古典型概率 條件概率 概率的基本公式 事件的獨(dú)立性 獨(dú)立重復(fù)試驗(yàn) 考試要求1了解樣本空間的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系與運(yùn)算2理解概率、條件概率的概念,掌握概率的基本性質(zhì),會(huì)計(jì)算古典型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式3理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法對(duì)比:無(wú)變化 本章重難考點(diǎn)的深度解析與可

24、命題角度詳見(jiàn)2011年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)第二部分,第三篇。二、隨機(jī)變量及其分布考試內(nèi)容隨機(jī)變量 隨機(jī)變量分布函數(shù)的概念及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量的概率密度 常見(jiàn)隨機(jī)變量的分布 隨機(jī)變量函數(shù)的分布考試要求1理解隨機(jī)變量的概念理解分布函數(shù)的概念及性質(zhì)會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率2理解離散型隨機(jī)變量及其概率分布的概念,掌握01分布、二項(xiàng)分布、泊松(Poisson)分布及其應(yīng)用3理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為的指數(shù)分布的概率密度為 4會(huì)求隨機(jī)變量簡(jiǎn)單函數(shù)的分布考試內(nèi)容隨機(jī)變量 隨機(jī)

25、變量分布函數(shù)的概念及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量的概率密度 常見(jiàn)隨機(jī)變量的分布 隨機(jī)變量函數(shù)的分布考試要求1理解隨機(jī)變量的概念理解分布函數(shù)的概念及性質(zhì)會(huì)計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率2理解離散型隨機(jī)變量及其概率分布的概念,掌握01分布、二項(xiàng)分布、泊松(Poisson)分布及其應(yīng)用3理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為的指數(shù)分布的概率密度為 4會(huì)求隨機(jī)變量簡(jiǎn)單函數(shù)的分布對(duì)比:無(wú)變化 對(duì)于本章隨機(jī)變量的概念、分布函數(shù)等重難考點(diǎn)的深度解析與可命題角度詳見(jiàn)2011年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)第二部分,第

26、三篇。三、二維隨機(jī)變量及其分布考試內(nèi)容二維隨機(jī)變量及其分布二維離散型隨機(jī)變量的概率分布和邊緣分布二維連續(xù)型隨機(jī)變量的概率密度和邊緣概率密度隨機(jī)變量的獨(dú)立性和不相關(guān)性常用二維隨機(jī)變量的分布兩個(gè)隨機(jī)變量簡(jiǎn)單函數(shù)的分布考試要求1理解二維隨機(jī)變量的概念,理解二維隨機(jī)變量的分布的概念和性質(zhì),理解二維離散型隨機(jī)變量的概率分布和邊緣分布,理解二維連續(xù)型隨機(jī)變量的概率密度和邊緣密度,會(huì)求與二維離散型變量相關(guān)事件的概率2理解隨機(jī)變量的獨(dú)立性及不相關(guān)性的概念,了解隨機(jī)變量相互獨(dú)立的條件3了解二維均勻分布,了解二維正態(tài)分布的概率密度,了解其中參數(shù)的概率意義4、會(huì)求兩個(gè)獨(dú)立隨機(jī)變量的和的分布考試內(nèi)容二維隨機(jī)變量及其分

27、布二維離散型隨機(jī)變量的概率分布和邊緣分布二維連續(xù)型隨機(jī)變量的概率密度和邊緣概率密度隨機(jī)變量的獨(dú)立性和不相關(guān)性常用二維隨機(jī)變量的分布兩個(gè)隨機(jī)變量簡(jiǎn)單函數(shù)的分布考試要求1理解二維隨機(jī)變量的概念,理解二維隨機(jī)變量的分布的概念和性質(zhì),理解二維離散型隨機(jī)變量的概率分布和邊緣分布,理解二維連續(xù)型隨機(jī)變量的概率密度和邊緣密度,會(huì)求與二維離散型變量相關(guān)事件的概率2理解隨機(jī)變量的獨(dú)立性及不相關(guān)性的概念,了解隨機(jī)變量相互獨(dú)立的條件3了解二維均勻分布,了解二維正態(tài)分布的概率密度,了解其中參數(shù)的概率意義4、會(huì)求兩個(gè)獨(dú)立隨機(jī)變量的和的分布對(duì)比:無(wú)變化四、隨機(jī)變量的數(shù)字特征考試內(nèi)容隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì) 隨機(jī)變量簡(jiǎn)單函數(shù)的數(shù)學(xué)期望 矩、協(xié)方差和相關(guān)系數(shù)及其性質(zhì)考試要求1理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會(huì)運(yùn)用數(shù)字特

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論