




已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
tionandself-healingwillbepresentedwithgreatfeaturesaswellaschallengesrelatedtozeroofintelligentbenefitsTheMachiningprocessmonitoringandcontrolisacoreconceptonwhichtobuildupthenewgenerationofflexibleself-opti-misingintelligentNCmachines.In-processmeasurementandprocessingoftheinformationprovidedbydedicatedsensorsinstalledinthemachine,enablesautonomousdecisionmakingbasedontheon-linediagnosisofthecorrectmachine,work-piece,toolandmachiningprocesscondition,leadingtoanincreasedmachinereliabilitytowardszerodefects,togetherwithhigherproductivityandefficiency.Indeed,themainsensingandprocessingtechniquesintheliterature35focuson0094-114X/$-seefrontmatterC2112008ElsevierLtd.Allrightsreserved.*Correspondingauthor.Tel.:+441612003804.E-mailaddress:s.mekidmanchester.ac.uk(S.Mekid).MechanismandMachineTheory44(2009)466476ContentslistsavailableatScienceDirectMechanismandMachineTheorydoi:10.1016/j.mechmachtheory.2008.03.006underverytightconditions1,2.Themachine-toolindustryisrespondingtoanumberofrequirements,e.g.e_commerce,just-in-time-productionandmostimportantlyzerodefectcomponent.Thisisfacilitatedbyintegratingnewmaterials,designconcepts,andcontrolmech-anismswhichenablemachinetoolsoperatingathigh-speedwithaccuraciesbelowthan5lm.Howevertheintegrationofhumanexperienceinmanufacturingtowardsflexibleandself-optimisingmachinesiswidelymissing.Thiscanbeachievedbyenhancingexistingcomputingtechnologiesandintegratingthemwithhumanknowledgeofdesign,automation,machin-ingandservicingintoe-manufacturing.Thenextgenerationwillbedescribedasnewintelligentreconfigurablemanufacturingsystemswhichrealisesadynamicfusionofhumanandmachineintelligence,manufacturingknowledgeandstate-of-the-artdesigntechniques.Thismayleadtolow-costself-optimisingintegratedmachines.Itwillencompassfault-tolerantadvancedpredictivemaintenancefacilitiesforproducinghigh-qualityerror-freeworkpiecesusingconventionalandadvancedmanufacturingprocesses.1.IntroductionComplexcomponentmachinedwithlengerequiredforthenewgenerationuctsandprocessesofferssubstantialhigherqualityandbetterreliability.variousaspectsofthenextgenerationofintelligentmachinetoolcentres.C2112008ElsevierLtd.Allrightsreserved.defectsisatopperformanceinmassproductionanditbecomesanewchal-machine-tools.Increasingtheprecisionandaccuracyofmachines,prod-toawiderangeofapplicationsfromultra-precisiontomassproductionwithrecentdevelopmentofultraprecisionmachinesisreachingnanometreprecisionBeyondintelligentmanufacturing:AnewgenerationofflexibleintelligentNCmachinesS.Mekida,*,P.Pruschekb,J.HernandezcaTheUniversityofManchester,SchoolofMechanical,AerospaceandCivilEngineering,ManchesterM601QD,UKbInstituteforControlEngineeringofMachineToolsandManufacturingUnits,UniversityofStuttgart,GermanycIDEKOTechnologicalCentre,ArriagaKalea,220870ElgoibarGipuzkoa,SpainarticleinfoArticlehistory:Received30November2006Receivedinrevisedform3March2008Accepted4March2008Availableonline29April2008abstractNewchallengesforintelligentreconfigurablemanufacturingsystemsareontheagendaforthenextgenerationofmachinetoolcentres.Zerodefectworkpiecesandjust-in-timepro-ductionaresomeoftheobjectivestobereachedforbetterqualityandhighperformanceproduction.Sustainabilityrequiresaholisticapproachtocovernotonlyflexibleintelligentmanufacturebutalsoproductandservicesactivities.Newroutesphilosophyofpossiblemachinearchitecturewithcharacteristicssuchashybridprocesseswithin-processinspec-journalhomepage:/locate/mechmtOntheotherhand,specialattentionhastobepaidtothelatterprocesscontrolstrategies(ACO).CharacteristicexamplesS.Mekidetal./MechanismandMachineTheory44(2009)466476467canbefoundat1519.Themainfunctionalityprovidedbysuchcontrolsystemsisthepost-processself-optimisationofprocessparameterset-up(i.e.feeds,depthsofcut,etc.),withtheobjectiveofset-uptimeminimisation,processknowledgemanagementandprocessoptimisation,towardsflexiblejust-in-timeproduction.Withthein-processmonitoringofprocessperformanceandthepost-processmeasurementoftheresultingpartquality,aknowledgebasedprocessmodelisusedtodeterminethenewoptimisedsetofcuttingparameters,enablingautonomousself-optimisation.Inthesameway,asapre-vioussteptooptimisation,ACOsystemsarealsoappliedtoselectthefirstprocessset-upfornewpartqualityandprocessrequirements.Therefore,ifaflexibleintelligentNCmachinetoolistobedeveloped,processknowledgebasedmodelsareacomponentofprimaryimportancetobeintegratedunderthemachinetoolcontrolarchitecture.Inadditiontotheadaptationofcontrolparametersaccordingtoprocessconditions,controlparametershavealsotobeoptimalduringhandling(includingchangingoperationsofworkpiecesandtools)andpositioningoperationsastheseoper-ationsaccounttypicallyformorethan50%oftheoveralloperatingtime.Earliermethodsforparameteroptimisationcon-centratedonthereductionofpositioningandsettlingtimesofthefeedaxisbytuningonlyafewbasiccontrolparameters(e.g.gainofthepositioncontrolloopandgainandresettimeofthevelocitycontrolloop).Withincreasedcom-putationalpower,optimisationmethodsasdescribedin20cannowbereinvestigatedfortheusewithawiderparametersetincludingtheparametersforaccelerationandjerklimitswhicharedirectlyinfluencingthevibrationsofanaxis.Ifthecharacteristicsofacontrolledaxisareknownbymeansofthevibrationbehaviour,anadequategenerationoftheprogrammedtrajectoriescanyieldafurtheroptimisation.Methodsforinputshaping49canbeusedtodesigntrajectoriesthatdonotexciteresonantfrequenciesofagivensystem.Hence,settlingtimesandthuspositioningtimescanbefurtherreduced.Concerningparameteroptimisationthroughself-learningparticularly,theinterestoftheso-calledmachinelearningap-proaches21willbeintroducedasthemainresearchtrendinprocessmonitoringandcontrolstrategiestowardstheintel-ligentmanufacturingsystem.2.ExpectedcharacteristicsofthenextgenerationTheexpectedcharacteristicsofthenextgenerationofmachinecentresaredescribedasfollows:(a)Integration:developmentofanintegratedmachinetoolbeingcapableofperformingbothconventionalandnon-con-ventionalprocessesinoneplatform.(b)Bi-directionaldataflow:definitionofabi-directionalprocesschainforunifieddatacommunicationexchangebetweenCAD,CAM,CNCandDrivesystems.(c)Processcontrolloop:developmentandCNCinte-grationofrobustandreliablereal-timestrategiesforthein-processtool,part,andprocessconditionmonitoringandcontrol.(d)Predictivemaintenance:specificationofaload-andsituation-dependentconditionmonitoringformachinecomponentsasabasisforself-reliantmachineoperation.Thiswillbefollowedbytheformulationofaself-organisingpredictivemain-tenanceschedulethatisbasedonself-andremotediagnosticsandcoversbothshortandlongtermaspects.(e)Autonomousoptimisation:developmentofaself-configuringself-optimisingcontrolsystemforautonomousmanufacturing,basedonthein-processmonitoring,characterisationandmanagementofprocessknowledge.Tofacilitatesuchcharacteristics,thefollow-ingtopicswillbenecessarytobeimplemented:(a)Todevelopanintegratedintelligentmachinecentrededicatedtoe-manufacturing.(b)Toinvestigateanddevelopfast,stableandstiffreconfigurablemachineswithhybridmachiningprocessestoprepareanewplatformforfuturemachine-tools.(c)Toinvestigateimplementationoftotalerrorcompensationandinsituinspectionfacility.monitoringstrategiesforpartconditionmonitoring(surfaceroughness,surfaceintegrityanddimensionalaccuracy),toolconditionmonitoring(theso-calledTCMforwearandbreakagedetection),processconditionmonitoring(chatteronsetandcollisiondetection)andmachinecomponentconditionmonitoringforpredictivemaintenancepurposes(rotarycompo-nentsandpartssubjecttofrictionsuchasguideways).Sincedirectandin-processmeasurementisnotgenerallypossibleduetotheaggressiveenvironmentinthecuttingzonesurroundings,themainresearcheffortoverthelastdecadesforpartandtoolmonitoringhasbeenfocusedonindirectmeasurementtechniques(processcondition-based),inwhichcuttingprocesscharacteristics(i.e.cuttingforcesandpower,vibrations,cuttingtemperature,acousticemission,etc.)aremeasuredinordertoindirectlyinferthepartandtoolcondition6,7.SensitivityofferedbyCNCinternalservosignalsfromopenarchitecturecontrollersisunderstudyaswell8,9,sincetheyenablethedevelopmentofmonitoringandcontrolstrategieswithouttheneedofinstallingadditionalsensorsinthemachine.Inthesameway,basedonthedataprovidedbyin-processmonitoring,autonomousself-optimisationcanbeperformedwiththeintegrationofprocesscontrolstrategiesintothemachinetoolcontrolarchitecture.Machiningprocesscontrolstrat-egiesareclassifiedintotwomaingroups5,namelyadaptivecontrolconstraint(ACC)andadaptivecontroloptimisation(ACO).IntheformerACCcontrolstrategies,aprocessvariable(i.e.cuttingforce)iskeptconstantandundercontrolthroughthereal-timein-processregulationofacuttingprocessparameter(i.e.cuttingfeed),withtheaimofincreasingprocessproduc-tivityandrepeatability.MainresearcheffortsonACCstrategiesfocusoncuttingforcecontrol1012andchattervibrationsuppression13,14.drawbacktodealwith.468S.Mekidetal./MechanismandMachineTheory44(2009)466476Indeed,flexiblemonitoringsystemsarerequiredundertheactualmarketrequirementsandthus,reliableprocessdiag-nosisisnecessaryunderdifferentcuttingconditions.Nowadays,acommonproblematicsharedbyconventionalprocessmonitoringapproachesforpartandtoolconditionmonitoringisthelackofreliabilityunderchangingcuttingconditionshencelimitingtheflexibilityofsuchautomationsystems3.Asacharacteristicexampleofthisproblematicforprocesscon-ditionbasedtoolconditionmonitoring(TCM),theprocessconditionisnotonlyinfluencedbychangesintoolcondition,butitisalsodirectlyaffectedbycuttingconditions.Furthermore,underdifferentcuttingconditions,differentwearmechanismscanbeactivatedonthetool,eachonehavingitsparticularimpactonprocessandpartcondition.Therefore,whensetting-upprocessmonitoringsystemsfornewcuttingconditions,previoustrialsforprocesssignaldatabaseretrievalarerequired4.Thesearecombinedtogetherwithskilledoperatorswiththenecessaryprocessknowledgeinordertointerpretchangesinprocessbehaviour(i.e.forces,vibrations,etc.)andset-upsuiteddetectionlimits.Additionally,flexibleprocessmonitoringequipmentsoftenrequiresadditionalsensorsthatcanfailandresultinunforeseendowntime.Asaresult,whenhighflex-ibilityisrequired,monitoringsystemsareusuallyswitched-offinindustry,anddirectpost-processmeasurementisper-formed,withthecorrespondingreliabilitylackinthemachinedpartquality.Dealingwithsuchaproblematic,model-basedprocessmonitoringandsensorfusionapproachesarepointedoutasthealternativeinordertogetreliableprocessconditiondiagnosis,withaclearresearcheffortoverlastyearsformachiningpro-cessessuchasturning2224,grinding4,25,26andmilling27.Ontheotherhand,theintegrationofhumanexperienceinmanufacturingiswidelymissingconcerningmachiningpro-cessoptimisation.Set-uptimereductioniscriticalwhenflexiblejust-in-timeproductionisrequired.Nowadays,set-up-timemainlydependsonprocessknowledgeconcentratedinskilledoperators,andthereisalackofsystematicmanagement,re-trieval,sharingandoptimisationofthatkeyknowledge.Furthermore,characterisationofprocessknowledgeanddevelop-mentofmodelsforautonomousprocessoptimisationarerequiredifset-uptimesaretobedrasticallyreduced.(d)Todevelopandproducenewmethodologiesandconceptsofautonomousmanufacturing,self-supervisionandself-diagnostic/tuning/healing.(e)Todevelopandintegratereal-timeprocesscontrollersintoopenCNCanddrivesystemarchitecture,takingthemachinefromanaxis-controlledsystemtoamachiningprocess-controlledself-reliantsystem,basedontheon-lineinformationprovidedbyrobustandreliablesensingtechniquesfortool,part,andmachiningprocessconditionmonitoring.(f)TodevelopandincorporateanextendibleandknowledgebasedCAMsystemcapableofrecognisingcomplexfeatures,performingself-learningbasedonin-processmonitoreddataprovidedbymachinecontrolloops,andautonomouslydeterminingtheoptimumtools/setsforgivenrequirementsofpartquality,machineproductivityandprocesseffi-ciency.Followingthee-manufacturingapproach,inasecondstep,CAMsystemscapableofsharingself-optimisedpro-cessknowledgebetweennetworkedmachinesaretobedeveloped.Aninterdisciplinaryapproachofmachine-toolbuildersinordertoachievetheseobjectivesbecomesnecessaryandin-cludescontrolmanufacturers,researchinstitutionsandpotentialend-users.Suchadevelopmentwillrealiseanumberofbreakthroughsinthefuture,e.g.(a)Delay-freecumzero-downtimeproduction:theproposede-manufacturingapproachwillseetheuseofelectronicservicesbasedonavailabledatafrommachinedprocesses,sensorsignals,andhumanexperiencethatisintegratedinazerodelay-timesystemtoenablemachineswithnearzero-downtimeandproductionthatmeetsuserrequirementswithzerodelaytime.(b)Self-reliantproduction:machineswillbeenabledtooperatewidelyautonomously.(c)Optimalproduction:self-configurationandself-optimisationwilleliminateproductionerrorsdowntothelimitationsofthein-processmeasurementdevices.3.ConceptsofintelligentandflexiblemachinesInFig.2,theauthorsproposeanewintegratedconceptforthenextgenerationofmachinetoolcentres.Basedontheknowledgeacquiredandthefeaturesextracted,theperformanceofcontrolsystemswillbeextendedtowardsself-controlledmanufacturingwiththeobjectivesofcost-effective,highquality,fault-tolerantandmoreflexiblesystemswithbetterpro-cesscapability.NewintelligentcontrolsystemshavetobedevelopedandintegratedwithopenarchitecturecontrollerssuchasOpenCNCC210orOSACA-basedCNCs.Inordertoallowanautomatederror-freeproductionwithnearzerodowntime,openinterfaces,learningcapabilities,self-tuningandself-adjustingmechanismsaswellassophisticatedmodel-basedpredictioninstrumentshavetobeimplementedattheselayers.Qualityinspectioncouldoperateinsituwithenvironmentalconditionstakenintoaccount.Forthefirsttime,theconceptofself-healingwithe-maintenancecouldbe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 康復(fù)醫(yī)療服務(wù)行業(yè)2025年市場供需平衡與需求增長研究報(bào)告
- 工業(yè)互聯(lián)網(wǎng)平臺區(qū)塊鏈智能合約安全風(fēng)險(xiǎn)預(yù)警與防范策略2025年研究
- 倉儲物流中心滅火系統(tǒng)施工技術(shù)方案
- 家居裝修行業(yè)售后服務(wù)計(jì)劃與保障措施
- 傳統(tǒng)行業(yè)如何利用區(qū)塊鏈提升業(yè)務(wù)效率
- 智能家居解決方案2025初步設(shè)計(jì)評估報(bào)告
- 當(dāng)代藝術(shù)在數(shù)字時(shí)代的轉(zhuǎn)型-全面剖析
- 城市雨水排放系統(tǒng)檢測計(jì)劃
- 區(qū)塊鏈技術(shù)在化妝品產(chǎn)業(yè)中的創(chuàng)新應(yīng)用與前景
- 2025七年級班主任班級管理創(chuàng)新計(jì)劃
- 鑄就數(shù)字堅(jiān)盾網(wǎng)絡(luò)安全技術(shù)知到課后答案智慧樹章節(jié)測試答案2025年春青島工學(xué)院
- GB/T 20203-2006農(nóng)田低壓管道輸水灌溉工程技術(shù)規(guī)范
- GB/T 14216-2008塑料膜和片潤濕張力的測定
- 新型節(jié)能型建筑材料的發(fā)展方向論文
- 新部編版四年級語文下冊課件(精美版)習(xí)作6
- 最新班組級安全培訓(xùn)試卷及答案
- 工程開工令模板
- 八年級期末質(zhì)量分析-課件
- 2022更新國家開放大學(xué)電大《計(jì)算機(jī)組網(wǎng)技術(shù)》網(wǎng)絡(luò)核心課形考任務(wù)三及四答案
- 特種設(shè)備檢查記錄
- 武廣客運(yùn)專線隧道防排水技術(shù)的突破QC成果
評論
0/150
提交評論