外文翻譯--小彎曲剛度電梯鋼絲繩的振動  英文版.pdf_第1頁
外文翻譯--小彎曲剛度電梯鋼絲繩的振動  英文版.pdf_第2頁
外文翻譯--小彎曲剛度電梯鋼絲繩的振動  英文版.pdf_第3頁
外文翻譯--小彎曲剛度電梯鋼絲繩的振動  英文版.pdf_第4頁
外文翻譯--小彎曲剛度電梯鋼絲繩的振動  英文版.pdf_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

JOURNALOFSOUNDANDVIBRATION/locate/jsviJournalofSoundandVibration263(2003)679699LettertotheEditorVibrationofelevatorcableswithsmallbendingstiffnessW.D.Zhu*,G.Y.XuDepartmentofMechanicalEngineering,UniversityofMarylandBaltimoreCounty,1000HilltopCircle,Baltimore,MD21250,USAReceived27September2002;accepted3October20021.IntroductionWhilecablesareemployedindiverseengineeringapplicationsincludingsuspensionbridges1,elevators2,powertransmissionlines3,andmarinetowingandmooringsystems4,theyaresubjecttovibrationduetotheirhighexibilityandlowintrinsicdamping.IrvineandCaughey5andTriantafyllou6studiedthedynamicsofsuspendedcableswithhorizontalandinclinedsupports.SergevandIwan7andChengandPerkins8analyzedthevibrationofcableswithattachedmasses.Simpson9,Triantafyllou10,andPerkinsandMote11studiedthein-planeandthree-dimensionalvibrationoftravellingcables.WickertandMote12andZhuandMote13analyzedthedynamicresponseoftravellingcableswithattachedpayloads.Whilethebendingstiffnessofcablesisneglectedinmoststudies,itwasincludedinthemodelsinRefs.14,15toavoidthesingularbehaviorsassociatedwithvanishingcabletension.Bendingstiffnesswasalsoaccountedforwhencablesaresubjectedtoexternalmoments3,16orwhentheirlocalbendingstressesneedtobedetermined17.Vibrationofelevatorcableshasbeenstudiedbyseveralresearchers2,1821.ChiandShu2calculatedthenaturalfrequenciesassociatedwiththelongitudinalvibrationofastationarycableandcarsystem.Roberts18usedlumpedmassapproximationstomodelthelongitudinaldynamicsofhoistandcompensationcablesinhigh-riseelevators.Yamamotoetal.19analyzedthefreeandforcedlateralvibrationofastationarystringwithslowly,linearlyvaryinglength.Terumichietal.20examinedthelateralvibrationofatravellingstringwithslowly,linearlyvaryinglengthandamass-springtermination.ZhuandNi21analyzedthedynamicstabilityoftravellingmediawithvariablelength.Thevibratoryenergyofthemediawasshowntodecreaseandincreaseingeneralduringextensionandretraction,respectively.Duetoitssmallbendingstiffnessrelativetothetension,themovinghoistcablewasmodelledasatravellingstringinRef.21.Byincludingthebendingstiffnessinthemodelsforthestationaryandmovinghoistcableswithdifferentboundaryconditions,theeffectsofbendingstiffnessandboundaryconditionsontheirdynamiccharacteristicsareinvestigatedhere.Convergenceofthe*Correspondingauthor.Tel.:+1-410-455-3394;fax:+1-410-455-1052.E-mailaddress:(W.D.Zhu).0022-460X/03/$-seefrontmatterr2002ElsevierScienceLtd.Allrightsreserved.doi:10.1016/S0022-460X(02)01468-2modelsisexamined.Theoptimalstiffnessanddampingcoefcientofthesuspensionofthecaragainstitsguiderailsareidentiedforthemovingcable.2.Stationarycablemodels2.1.BasicequationsWeconsidersixmodelsofthestationaryhoistcabletoevaluatetheeffectsofbendingstiffnessandboundaryconditionsonitsdynamiccharacteristics.Sincetheverticalcablehasnosag,itismodelledasatautstringandatensionedbeam.ShowninFig.1arethebeamandstringmodelsofthecablewiththesuspensionofthecaragainstitsguiderailsassumedtoberigid.ShowninFig.2arethebeamandstringmodelsofthecablewiththesuspensionofthecaragainsttheguiderailsmodelledbyaresultantstiffnesskeanddampingcoefcientce:Inallthecasesthemassofthecarisdenotedbyme:WhilethecarcanhavenitedimensionsinFig.1,itismodelledasapointmassinFig.2.Whenthecableismodelledasatensionedbeam,asshowninFigs.1(a)and(b),and2(a)and(b),itsfreelateralvibrationinthexyplaneisgovernedbyryttx;tC0Pxyxx;tC138xEIyxxxxx;t0;0oxol;1wherethesubscriptdenotespartialdifferentiation,yx;tisthelateraldisplacementofthecableparticleatpositionxattimet;listhelengthofthecable,risthemassperunitlength,EIisthebendingstiffness,andPxisthetensionatpositionxgivenbyPxmerlC0xC138g;2inwhichgistheaccelerationduetogravity.Theboundaryconditionsofthecablewithxedends,asshowninFig.1(a),arey0;tyx0;t0;yl;tyxl;t0:3xlyemyememy(a)(c)(b)Fig.1.Schematicofthestationaryhoistcablewiththesuspensionofthecaragainstitsguiderailsassumedtoberigid:(a)xedxedbeammodel,(b)pinnedpinnedbeammodel,and(c)stringmodel.W.D.Zhu,G.Y.Xu/JournalofSoundandVibration263(2003)679699680Theboundaryconditionsofthecablewithpinnedends,asshowninFig.1(b),arey0;tyxx0;t0;yl;tyxxl;t0:4ForthecablemodelsinFig.2(a)and(b),theboundaryconditionsatx0arethesameasthoseinEqs.(3)and(4),respectively,andtheboundaryconditionsatxlareyxxl;t0;EIyxxxl;tPlyxl;tmeyttl;tceytl;tkeyl;t:5NotethatthebendingmomentatxlvanishesintherstequationinEq.(5)becausetherotaryinertiaofthecarisnotconsidered.ThegoverningequationforthemodelsinFigs.1(c)and2(c)isgivenbyEq.(1)withEI0;andtheboundaryconditionatx0isy0;t0:TheboundaryconditionatxlforthemodelinFig.1(c)isyl;t0andtheboundaryconditionatxlforthemodelinFig.2(c)isgivenbythesecondequationinEq.(5)withEI0:DuetovanishingslopeofthecableatthexedendsinFigs.1(a)and2(a),themodelsinFigs.1(c)and2(c)cannotbeobtainedfromthemodelsinFigs.1(a)and2(a),respectively,bysettingEI0:Inadditiontoprovidinganominaltensionmeg;themassofthecarresultsinaninertialforceinthesecondequationinEq.(5)forthemodelsinFig.2.GalerkinsmethodandtheassumedmodesmethodareusedtodiscretizethegoverningpartialdifferentialequationsforthemodelsinFigs.1and2,respectively.ThesolutionofEq.(1)isassumedintheformyx;tXnj1qjtfjx;6wherefjxarethetrialfunctions,qjtarethegeneralizedcoordinates,andnisthenumberofincludedmodes.ThetrialfunctionsforthemodelsinFig.1satisfyalltheboundaryconditionsandthoseforthemodelsinFig.2satisfyalltheboundaryconditionsexcepttheforceboundaryem/2ek/2ek/2ec/2ecy/2ek/2ek/2ec/2ecemylx/2ek/2ek/2ec/2ecyem(a)(b)(c)Fig.2.Schematicofthestationaryhoistcablewherethecarismodelledasapointmassmeanditssuspensionagainsttheguiderailshasaresultantstiffnesskeanddampingcoefcientce:(a)beammodelwithaxedendatx0;(b)beammodelwithapinnedendatx0;and(c)stringmodel.W.D.Zhu,G.Y.Xu/JournalofSoundandVibration263(2003)679699681conditioninEq.(5).SubstitutingEq.(6)intoEq.(1)andthesecondequationinEq.(5),multiplyingthegoverningequationbyfix(i1;2;y;n),integratingitfromx0tol;andusingtheresultingboundaryconditionyieldsthediscretizedequationsforthemodelsinFig.2(a)and(b):M.qtCqtKqt0;7whereqq1;q2;y;qnC138TisthevectorofgeneralizedcoordinatesandM,K,andCarethesymmetricmass,stiffness,anddampingmatrices,respectively,withentriesMijZl0rfixfjxdxmefilfjl;8KijZl0Pxf0ixf0jxdxZl0EIf00ixf00jxdxkefilfjl;9Cijcefilfjl;10inwhichtheprimedenotesdifferentiationwithrespecttox:ThediscretizedequationsforthemodelinFig.2(c)aregivenbyEqs.(7)(10)withEI0inEq.(9).ThediscretizedequationsforthemodelsinFig.1(a)and(b)aregivenbyEqs.(7)(10)withme0inEq.(8)andkece0inEqs.(9)and(10);thediscretizedequationsforthemodelinFig.1(c)aregivenbyEqs.(7)(10)withme0inEq.(8)andkeEIce0inEqs.(9)and(10).WhilethediscretizedequationsforthemodelsinFig.1(a)and(b)havethesameform,thetrialfunctionsusedsatisfydifferentboundaryconditions.ThisalsoholdsforthemodelsinFig.2(a)and(b).TheeigenfunctionsofaxedxedbeamandthoseofaxedxedbeamunderuniformtensionTmegareusedasthetrialfunctionsforthemodelinFig.1(a).Theeigenfunctionsofapinnedpinnedbeam,whichareidenticaltothoseofapinnedpinnedbeamunderuniformtension,areusedasthetrialfunctionsforthemodelinFig.1(b).Theeigenfunctionsofaxedxedstring,whichareidenticaltothoseofapinnedpinnedbeam,areusedasthetrialfunctionsforthemodelinFig.1(c).DuetothesametrialfunctionsthediscretizedequationsforthemodelinFig.1(c)canbeobtainedfromthoseforthemodelinFig.1(b)bysettingEI0:TheeigenfunctionsofacantileverbeamandthoseofaxedfreebeamunderuniformtensionTmegareusedasthetrialfunc

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論