




已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
temperaturePujos,Cedex,greatmoldingnumercoolingistoeffectandqualityfastestlarindustrieincreasewellknowneconomicallymermeltsufficientlysothatthepartcanbeejectedwithoutanysignificantdeformation2.Anefficientcoolingsystemdesignofthecoolingchannelsaimingatreducingcycletimemustminimizesuchundesireddefectsassinkmarks,differentialshrinkage,ther-malresidualstressbuilt-upandpartwarpage.Duringthepost-fill-ingandcoolingstagesofinjectionmolding,hotmoltenpolymertouchesthecoldmoldwall,andasolidlayerformsonthewall.tiontothecoolantmovingthroughthecoolingchannelsandbynaturalconvectiontotheairaroundtheexteriormoldsurface.Thecoolantisflowingthroughthechannelsatagivenflowrateandagiventemperaturewhichisconsideredconstantthroughoutthelengthofthechannel.Inthiswork,time-dependenttwo-dimensionalmodelisconsideredwhichconsistsofanentirecomputationaldomainofthecavity,moldandcoolingchannelsurfaces.ThecyclictransienttemperaturedistributionofthemoldandpolymerT-shapecanbeobtainedbysolvingthetransientenergyequation.*Correspondingauthor.Tel.:+330540006348;fax:+330540002731.AppliedThermalEngineering29(2009)17861791ContentslistsavailableE-mailaddress:hassanenscpb.fr(H.Hassan).cesswherepolymerisinjectedintoamouldcavity,andsolidifiestoformaplasticpart.Therearethreesignificantstagesineachcy-cle.Thefirststageisfillingthecavitywithmelthotpolymerataninjectiontemperature(fillingandpost-fillingstage).Itisfollowedbytakingawaytheheatofthepolymertothecoolingchannels(coolingstage),finallythesolidifiedpartisejected(ejectionstage).Thecoolingstageisofthegreatestimportancebecauseitsignifi-cantlyaffectstheproductivityandthequalityofthefinalproduct.Itiswellknownthatmorethanseventypercentofthecycletimeintheinjectionmoldingprocessisspentincoolingthehotpoly-distributionofthemoldandpolymer,therefore,theireffectonthesolidificationdegreeofthatpolymer.AfullytransientmoldcoolinganalysisisperformedusingthefinitevolumemethodforaT-shapeplasticmoldwithsimilardimensionsto5,asshowninFig.1.Differentcoolingchannelspositionsandformsarestudied.2.MathematicalmodelTheheatofthemoltenpolymeristakenawaybyforcedconvec-1.IntroductionPlasticindustryisoneoftheworldsrankedasoneofthefewbillion-dolinjectionmoldedpartscontinuestoplasticinjectionmoldingprocessiscientmanufacturingtechniquesforprecisionplasticpartswithvariousshapesatlowcost1.Theplasticinjectionmolding1359-4311/$-seefrontmatterC2112008ElsevierLtd.Alldoi:10.1016/j.applthermaleng.2008.08.011growingindustries,s.Demandforeveryyearbecauseasthemosteffi-producingofandcomplexgeometryprocessisacyclicpro-Asthematerialcoolsdown,thesolidskinbeginstogrowwithincreasingtimeasthecoolingcontinuesuntiltheentirematerialsolidifies.Overtheyears,manystudiesontheproblemoftheopti-mizationofthecoolingsystemlayoutininjectionmoldingandphasechangeofmoldingprocesshavebeenmadebyvariousresearchersandoneswhichfocusedintensityonthesetopicsandwillusedinoursystemdesignandvalidationsare36.ThemainpurposeofthispaperistostudytheeffectofthecoolingchannelspositionanditscrosssectionshapeonthetemperatureCoolingsystemleadstominimumcoolingtimeisnotachievinguniformcoolingthroughoutthemould.C2112008ElsevierLtd.Allrightsreserved.EffectofcoolingsystemonthepolymerduringinjectionmoldingHamdyHassan*,NicolasRegnier,CedricLebot,CyrilLaboratoireTREFLE-Bordeaux1-UMR8508,SiteENSCPB,16Av.PeyBerland,33607PessacarticleinfoArticlehistory:Received15November2007Accepted19August2008Availableonline30August2008Keywords:PolymerSolidificationInjectionmoldingabstractCoolingsystemdesignisofiscrucialnotonlytoreduceityofthefinalproduct.Aperformed.Acyclictransientofthemoldcoolingstudycoolingsystemdesign.Theturedistributionofthemoldtivityoftheprocess,thecoolingshouldbenecessaryfortheAppliedThermaljournalhomepage:www.elsevirightsreserved.GuyDefayeFranceimportanceforplasticproductsindustrybyinjectionmoldingbecauseitcycletimebutalsoitsignificantlyaffectstheproductivityandqual-icalmodelingforaT-moldplasticparthavingfourcoolingchannelsisanalysisusingafinitevolumeapproachiscarriedout.Theobjectivedeterminethetemperatureprofilealongthecavitywalltoimprovetheofcoolingchannelsformandtheeffecttheirlocationonthetempera-thesolidificationdegreeofpolymerarestudied.Toimprovetheproduc-timeshouldbeminimizedandatthesametimeahomogeneouscoolingoftheproduct.TheresultsindicatethatthecoolingsystemwhichandsolidificationatScienceDirectE/locate/apthermengdissipationoftheheatthroughphasechangeprocess.Thistech-plicit/implicittechniquealreadyvalidatedinpreviousstudiesbyVincent8,andLeBot9thatisbasedonthetechniqueNewSource”ofVoller10.Thismethodproposestomaintainthenodeswherephasechangeoccurstothemeltingtemperature.Thissolu-tionisrepeateduntiltheconvergenceofthetemperaturewiththesourcetermequalstothelatentheat.Thesourcetermisdiscret-izedby:ScqLfofsotqLffn1sC0fnsDt5Thesolidfractionwhichisfunctionofthetemperatureisline-arizedas:NomenclatureCP(J/kgK)specificheatatconstantpressurefssolidfractionh(W/m2K)heattransfercoefficientKnumberoftheinternaliterationsLlatentheatoffusion,J/kgnnumberoftheexternaliterationsNnormaldirectionScsourcetermT(K)temperaturet(s)timeH.Hassanetal./AppliedThermalEngineeringniqueisappliedonfixednodesandtheenergyequationinthiscaseisrepresentedasfollow:qCPoTotr:krTSc2AndthesourcetermScisrepresentedby:ScqLfofsot3wherefs(T)=0.0atTC31Tf,(fullliquidregion)0C30fsC301,atT=Tf(iso-thermalphasechangeregion)and,fs(T)=1atTC30Tf(fullsolidregion).Onthewholedomain,thefollowingboundaryconditionsareappliedC0koToNhcTC0Tc2C1;andC0koToNhaTC0Ta2C2:43.NumericalsolutionThenumericalsolutionofthemathematicalmodelgoverningthebehaviorofthephysicalsystemiscomputedbyfinitevolumemethod.TheequationsaresolvedbyanimplicittreatmentforqCPoTotr:krT1Inordertotakeintoaccountthesolidification,asourcetermisaddedtotheenergyequationcorrespondingtoheatabsorptionorheatrelease7,whichtakesinconsiderationtheabsorptionorthethedifferenttermsoftheequationssystem.Whenwetakeincon-siderationthesolidificationeffect,theenergyequationissolvedwithafixedpointalgorithmforthesolidfraction.Foreach,itera-tionofthatfixedpoint,weusediscretizationwithtimehybridex-0.0040.030.004P2P3P4P1P6P7P5Exteriorair,freeconvection,haCoolingchannels,forcedconvection,hfFig.1.MoldstructurewithaT-shapeproductandfourcoolingchannels(Dim.Inm).Greeksymbolsk(W/mK)thermalconductivityq(kg/m3)densityC1interiorsurfaceofthecoolingchannelsC2exteriorsurfaceofthemoldSubscriptsaambientairccoolingfluidfphasechange0.010.010.010.010.010.02A1A2A3A4A5A7B1B2B3B4B5B7C1C2C3C4C5D1D2D3D4D50.040.020.010.015PolymerFig.2.Differentcoolingchannelspositions(Dim.Inm).29(2009)178617911787fnk1KsfnkKsdFsdTC18C19nkKTnk1KC0TnkK6Then,weforcethetemperaturetotendtothemeltingtemper-aturewherethesourcetermisnotnullbyupdatingthesourceterm:Sk1cSkcqCpTC0TfDt7Theenergyequationisdiscretizedasfollow:qCPDtC0qLfDtdFdTC18C19nkK!Tnk1KC0r:krTnk1KqLfDtfnk1KsC0fnsC0qLfDtdFdTC18C19nkKTfqCPDtTn8With:dFdT!C01if0C30fnkKsC301anddFdT0iffnkKs0or19Thisprocessallowsdifferentiatingthetemperaturefieldandso-lidfractioncalculatedatthesameinstantandthelinearsystemissolvedbycentraldiscretizationmethod11.Foreachinternaliter-ation,theresolutionofthatequationprovidesfnk1KsandTnk1K.Theconvergenceisachievedwhenthecriteriaofthesolidfractionandtemperatureareverifiedby:fnk1KsC0fnkKsC13C13C13C13C13C13C302fand;Tnk1KC0TnkKC13C13C13C13C13C13C302T10Furtherdetailsonthenumericalmodelanditsvalidationarepresentedin9.thehorizontaldirection(betweenpositionsB2andB5orpositionsA2andA5whichhavethemaximumsolidificationpercent).WhenwecomparethesolidificationpercentfordifferentlocationsoftheupperpositionsCandD,wefindthatasthechannelapproachestotheproductinthehorizontaldirectionthesolidificationpercentincreases,andthecoolingrateincreaserapidlycomparedwiththeeffectoflowerposition.Wenoticethat,theeffectofthecoolingchannelpositiononthetemperaturedistributionandsolidificationdecreasesasthecoolingtimeaugmentstohighervalueanditsef-1788H.Hassanetal./AppliedThermalEngineering4.ResultsanddiscussionAfulltwo-dimensionaltime-dependentmoldcoolinganalysisininjectionmoldingiscarriedoutforaplatemouldmodelwithT-shapeplasticmoldandfourcoolingchannelsasindicatedinFig.1.Duetothesymmetry,halfofthemoldismodeledandana-lyzed.Allthecoolingchannelshavethesamesizeandtheyhavediameterof10-mmeachincaseofcircularchannels.ThecoolingoperatingparametersandthematerialpropertiesarelistedinTa-bles1and2,respectively,andtheyareconsideredconstantduringallnumericalresults5,7.Eachnumericalcycleconsistsoftwostages,coolingstagewherethecavityisfilledwithhotpolymerinitiallyatpolymerinjectedtemperature,theejectionstagewherethecavityisfilledwithairinitiallyatambienttemperature.Figs.3and4showthecyclictransientvariationsofthemouldtempera-turewithtimefor16smoldcoolingtimeatlocations;(P1,P2,P3,P4)besidethemouldwallsandP5toP7insidethemouldwalls,respectively(Fig.1)andthatincaseofappliedthesolidifica-tionandwithoutappliedsolidification.Theyaresimulatedforthefirst30cyclesincaseofcircularcoolingchannelsposition(A5,D3)asshowninFig.2.Wefindthat,thesimulatedresultsareingoodagreementwiththetransientcharacteristicofthecyclicmoldtem-peraturevariationsdescribedin5.Itisfoundthatthereisaslightlydifferenceintemperaturesvaluesbetweenthetworesults,thusduetothedifferenceinnumericalmethodusedandtheaccu-racyinthenumericalcalculations.Thefiguresshowthat,therela-tivelytemperaturefluctuationislargestnearthecavitysurfaceanddiminishesawayfromthecavitysurface.Wefindthatthemaxi-mumamplitudeoftemperaturefluctuationduringthesteadycyclecanreach10C176Cwithoutapplyingsolidificationand15C176Cincaseofapplyingthesolidification.4.1.EffectofcoolingchannelsformAnefficientcoolingsystemdesignprovidinguniformtempera-turedistributionthroughouttheentirepartduringthecoolingpro-cessshouldensureproductqualitybypreventingdifferentialshrinkage,internalstresses,andmouldreleaseproblems.Italsoshouldreducetimeofcoolingandacceleratethesolidificationpro-cessoftheproducttoaugmenttheproductivityofthemoldingTable1CoolingoperatingparametersCoolingoperatingparameterCoolingoperatingparameterCoolantfluidtemperature30C176CAmbientairtemperature30C176CPolymerinjectedtemperature220C176CHeattransfercoefficientofambientair77W/m2KTemperatureoffusionofpolymer110C176CHeattransfercoefficientinsidecoolingchannel3650W/m2KLatentheat115kJ/Moldopeningtime4skgprocess.Todemonstratetheinfluenceofthecoolingchannelsformonthetemperaturedistributionthroughoutthemouldandsolidi-ficationprocessoftheproduct,weproposedthreedifferentcrosssectionalformsofthecoolingchannels,circular,square,rectangu-lar1withlongtowidthratioof0.5andrectangular2withwidthtolongratioof0.25.Twocasesarestudied;firstcase,allthecoolingchannelshavethesamecrosssectionalarea,andthesecondcase,theyhavethesameperimeter.Thecomparisoniscarriedoutforthesamecoolingchannelsposition(A5,D3).Fig.5showsthesolidificationpercent(calculatednumericallyasthesummationofthesolidfractionofeachelementmultipliedbytheareaofthatelementtototalareaoftheproduct)fordiffer-entformswithdifferentcoolingtime.Thefigureindicatesthattheeffectofcoolingchannelsformonthecoolingratedecreaseswithincreasingthecoolingtime.Italsoshowsthatthecoolingchannelformrectangle2hasthemaximumsolidificationpercentforcase1,andincase2thechangingofthecoolingchannelsformhasnotasensibleeffectonthesolidificationpercent.Thesameresultscanbeobtainedwhenwecomparedthesolidificationintheprod-uctandthetemperaturedistributionthoughthemouldfordiffer-entformswiththesamecrosssectionalareaattheendofthecoolingstageforcoolingtime24sforcoolingcycle25,asshowninFigs.6and7,respectively.Theresultsindicatethatthecoolingprocessisimprovedasthecoolingchannelstendtotaketheformoftheproduct.4.2.EffectofcoolingchannelspositionToinvestigatetheeffectofthecoolingchannelsposition,wedi-videdtheproposedpositionsintofourgroups,groupsAandBfordifferentpositionsofthebottomcoolingchannel,withafixedpo-sitionofthetopcoolingchannel,andwithviceversaforgroupsCandDforthesamecoolingchannelform(circular)asillustratedinFig.2.Fig.8representstheeffectofdifferentcoolingchannelpositionsontheofsolidificationpercentattheendof25thcoolingcycleforgroupsAandB(lowercoolingchanneleffect),CandD(uppercool-ingchanneleffect)withcoolingtime.Itindicatesthatforlowercoolingchannelpositioneffect,thecoolingrateincreasesandhencethesolidificationpercentofthepolymerincreasesasthecoolingchannelapproachesthepolymerintheverticaldirection(positionBhassolidificationpercentgreaterthanpositionA,andwiththesamepositionsCandD).Thefigureshowsalsothemostefficientcoolingrateisobtainedasthecoolingchanneltakesthepositionbetween20%and50%throughtheproductlengthforTable2MaterialpropertiesMaterialDensity(kg/m3)Specificheat(J/kgK)Conductivity(W/mK)Mould767042636.5Polymer93818000.25Air1.1710060.026329(2009)17861791fectonthecoolingrateoftheproductisnotthesamefordifferentpositions.Engineering6065abH.Hassanetal./AppliedThermalThesolidificationdegreedistributionthroughtheproductatt
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游補(bǔ)充協(xié)議書
- 汽車工程原理與維修技術(shù)試題集解析
- 進(jìn)口產(chǎn)品合作合同協(xié)議
- 清工勞務(wù)協(xié)議書
- 永大稅務(wù)協(xié)議書
- 車輛轉(zhuǎn)讓協(xié)議和轉(zhuǎn)讓合同
- 輪值董事協(xié)議書范本
- 配電柜樓層使用協(xié)議合同
- 車輛運(yùn)輸協(xié)議合同書
- 轉(zhuǎn)讓定制衣柜合同協(xié)議
- 2022新高考卷小說《江上》 答案+評(píng)點(diǎn)
- 裝配式擋墻專項(xiàng)施工方案
- 閩教版(2020版)六年級(jí)下冊(cè)信息技術(shù)整冊(cè)教案
- 光電倍增管PPT
- 1-2會(huì)員代表選票
- 年成都遠(yuǎn)洋太古里案例解析(p)PPT課件
- 知識(shí)產(chǎn)權(quán)戰(zhàn)略案例分析
- 滬科七年級(jí)數(shù)學(xué)下冊(cè) 實(shí)數(shù)單元綜合測(cè)試卷解析
- 學(xué)生安全協(xié)議書5篇
- 污水廠設(shè)備管理培訓(xùn)(共110頁(yè)).ppt
- 雍琦版-《法律邏輯學(xué)》課后習(xí)題答案(共78頁(yè))
評(píng)論
0/150
提交評(píng)論