




已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
CHINESEJOURNALOFMECHANICALENGINEERINGVol.22,aNo.4,a2009594DOI:10.3901/CJME.2009.04.594,;ReliabilitySimulationandDesignOptimizationforMechanicalMaintenanceLIUDeshun*,HUANGLiangpei,YUEWenhui,andXUXiaoyanHunanProvincialKeyLaboratoryofHealthMaintenanceforMechanicalEquipmentHunanUniversityofScienceandTechnology,Xiangtan411201,ChinaReceivedSeptember8,2008;revisedApril16,2009;acceptedApril30,2009;publishedelectronicallyMay5,2009Abstract:Reliabilitymodelofamechanicalproductsystemwillbenewlyreconstructedandmaintenancecostwillincreasebecausefailedpartscanbereplacedwithnewcomponentsduringservice,whichshouldbeaccountedforinsystemdesign.Inthispaper,areliabilitymodelandreliability-baseddesignoptimizationmethodologyformaintenancearepresented.First,basedonthetime-to-failuredensityfunctionofthepartofthesystem,theagedistributionsofallpartsofthesystemduringserviceareinvestigated,areliabilitymodelofthemechanicalsystemformaintenanceisdeveloped.Then,reliabilitysimulationsofthesystemswithWeibullprobabilitydensityfunctionsareperformed,thesystemminimumreliabilityandsteadyreliabilityformaintenancearedefinedbasedonreliabilitysimulationduringthelifecycleofthesystem.Thirdly,amaintenancecostmodelisdevelopedbasedonreplacementratesoftheparts,areliability-baseddesignoptimizationmodelformaintenanceispresented,inwhichtotallifecyclecostisconsideredasdesignobjectiveandsystemreliabilityasdesignconstrain.Finally,thereliability-baseddesignoptimizationmethodologyformaintenanceisusedtodesignofalinkringforthechainconveyor,whichshowsthatoptimaldesignwiththelowestmaintenancecostcanbeobtained,andminimumreliabilityandsteadyreliabilityofthesystemcansatisfyrequirementofsystemreliabilityduringserviceofthechainconveyor.Keywords:maintenance,reliability,simulation,designoptimization1IntroductionDuringthelifecycleofamechanicalproduct,maintenance,whichisimplementedonthejudgmentofpracticalstates,preservationandreconstructionofsomecertainstatesfortheproduct,isveryimportanttokeeptheproductavailableandprolongitslife.Studiesonmaintenanceformechanicalproductsareroughlyclassifiedintothefollowingthreecatalogs.(1)Howtoformulatemaintenancepolicyor(and)howtooptimizemaintenanceperiodsconsideringsystemreliabilityandmaintenancecost,e.g.,whensystemreliabilityissubjectedtosomecertainconditions,maintenancepolicyandoptimalmaintenanceintervalaredeterminedtomakemaintenancecostlowest14.(2)Todevelopmaintenancemethodsandtoolstoensuresystemmaintenancetobothlowcostandshortrepairtime,suchasspecialmaintenancetoolboxesdeveloped59.(3)Todesignformaintenance(DFM),namelyduringdesignprocedure,systemmaintainabilityisevaluatedand*Correspondingauthor.E-mail:ThisprojectissupportedbyNationalBasicResearchProgramofChina(973Program,GrantNo.2003CB317001),ScientificResearchFundofHunanProvincialEducationDepartmentofChina(GrantNo.07A018),HunanProvincialNaturalScienceFoundationofChina(GrantNo.07JJ5074),andNationalNaturalScienceFoundationofChina(GrantNo.50875082)isimproved1014.Maintenancestartsatdesign.Obviously,designmethodologyformaintenance,whichisoneofbesteffectivemaintenancemeansinthelife-cycleofaproduct,attractsmanyresearchersinterests.However,researchondesignformaintenanceismainlycentralizedontwofields.Oneismaintainabilityevaluationonproductdesignalternatives,theotherissomepeculiarstructuresofpartsdesignedforconvenientmaintenance.Forexample,computer-aidedmaintainabilityevaluationtoolsforproductdesign11,productassemblyanddisassemblysimulationprogramsformaintenance12,airplanedesignformaintenance13,andsoon.Butstudiesondesignmethodologiesconsideringproductreliability,maintenancecostandmaintenancepolicyareseldomreported.SHUandFLOWERoncepointedoutthatreckoninginlaborcostandproductionintervalcost,designdecisionofalternativesofthepartwouldbeinfluenced.However,subsequentresearchreportshavenotbeenpresented15.Inthispaper,basedonthetime-to-failuredensityfunctionofthepart,distributionsofserviceageofpartsforamechanicalsystemthatundergoesmaintenanceareinvestigated.Thenthereliabilitymodelofthemechanicalsystemisreconstructedandsimulated.Finally,anoveldesignoptimizationmethodologyformaintenanceisdevelopedandillustratedbymeansofdesignofalinkringforthechainconveyor.CHINESEJOURNALOFMECHANICALENGINEERING5952ReconstructionofReliabilityModelofMechanicalSystemforMaintenance2.1ModelassumptionsAfteramechanicalsystemrunssometime,duetoreplacementoffailparts,primaryreliabilitymodelisinapplicabletochangedsystem,thusthereliabilitymodelshouldbereconstructed.Themechanicalsystemdiscussedinthispaperhasfollowingcharacteristics.(1)Systemconsistsofalargenumberofsametypeparts,inwhichthenumberofpartsisconstantduringthewholelifecycleofthesystem.(2)Thetime-to-failuredensitydistributionfunctionsofallpartsarethesame,also,replacementpartshavethesamefailuredistributionfunctionsastheoriginalparts(3)Failureofeachpartisarandomindependentevent,i.e.,failureofonepartdoesnotaffectfailureofotherpartsinthesystem.Forexample,achainconveyorwidelyusedinmanyindustriesconsistsofalargenumberofsameroundrings,samelinksheetsandsamescrapeboards.Theirrespectivenumbersareconstantafterthechainconveyorisputintotheservice.Also,eachpart,beingsubjectedtosimilarworkconditionsandsimilarfailurestates,hasthesameoridenticaldensitydistributionoftimetofailure.Moreover,replacementpartshavefailuretimedensityfunctionsameoridenticaltotheoriginalpartsduringtheserviceofthechainconveyor.2.2ReliabilitymodelingformaintenanceReliabilityofamechanicalsystemdependsonitsparts,yetreliabilityandfailureprobabilityofwhichrestontheirserviceages.Herein,accordingtothedensitydistributionfunctionoftimetofailureofthepart,partserviceagedistributionofthemechanicalsystemiscalculated,thenreliabilitymodelofthemechanicalsystemformaintenanceisdeveloped.Duringtheserviceofamechanicalsystem,somepartsthatfailrequiretobereplacedintime,henceagedistributionofpartsofthemechanicalsystemundergoingmaintenancehasbeenchanged.Supposedthatafterthemechanicalsystemrunssometimentn=,whereistimebetweenmaintenanceactivities,i.e.,maintenanceinterval,theunitofcanbehours,days,months,oryears.If()inptrepresentsageproportionofpartsatntwithagei,thusagedistributionofpartsattimentdenotesmatrix01(),(),nnptpt(),inpt()nnpt.Thefailuredensityfunctionofpartsandcurrentagedistributionofpartsinthesystemdetermineagedistributionatnexttime,ortheportionofthecontentsofeachbinthatsurvivetothenexttimestep.Anagedistributionobtainedateachtimestepforeachpartpopulationdeterminesfailurerateforthefollowingtimestep.Tofindfailureprobabilityofpartsthefailuredensityfunctionisintegratedfromzerotont.Theportionofthepopulationthatsurvivesadvancestothenextagebox,andtheportionthatfailisreplacedbynewpartstobecomezeroagetoreenterthefirstbox.Initially,allpartsarenewandzeroageinthefirstbox.Thatis,at00t=,theportioninthefirstboxis00()1pt=.(1)At1t=,agefractionsofthefirstboxandthesecondboxarerepresentedas1100001000()()1()d,()()()d.ptptfxxptptfxx=(2)Portionsofbothageboxessurviveandadvancetothenextagebox,andportionsoffailedpartsfrombothboxesreplacedbynewpartsappearinthefirstbox.At22t=,theproportionsofthefirstthreeboxesarecalculatedasfollows:22211012010202110100()()1()d,()()1()d,()()()d()()d,ptptfxxptptfxxptptfxxptfxx=+#(3)So,atntn=,portionsofpartsineachboxarecalculatedbyusingthefollowingequations:110(1)1210(2)23103321022110()()1()d,()()1()d,()()1()d,()()1()d,()()1()d,nnnnnnnnnnnnnnnnnnnptptfxxptptfxxptptfxxptptfxxptptfxxp=#10101(1)0100()()1()d,()()()d.nnnininitptfxxptptfxx+=(4)Where0()nptisthefractionofpopulationofpartswithage0atnt,representingpartsthathavejustbeenputintoservice.Itmeansthat0()nptisfailurerateofparts,orreplacementrateoffailedparts.Inotherword,thefractionsofpartsinthefirstboxat01,ntttarenewpartsthatreplacethesefailedparts.AseriessystemconsistsofNpartsthathavethesamefailuredensitydistribution,eachpartisjustaseriesunit,andeachunitisrelativelyindependent.InseriessystemtheYLIUDeshun,etal:ReliabilitySimulationandDesignOptimizationforMechanicalMaintenanceY596failureofanyoneunitresultsinsystemfailure,inaccordingtotheprincipleofprobabilitymultiplication,thereliabilityofseriessystemsbecomes()00()1()d.inptNniniRtfxx=(5)Sincethenumberofpartsthatcomprisethesystemisconstant,here,thesystemreliabilityofthemechanicalsystemformaintenanceisdefinedas()00()()1()dinNnnptNniNiRtRtfxx=()001()d.inptniifxx=(6)Fromabovetosee,aslongasthetime-to-failuredensityfunctionandmaintenanceintervalaregiven,serviceagedistributionsofpartsandsystemreliabilitycouldbeobtainedbysimulation.3ReplacementRateandReliabilitySimulationforMaintenance3.1WeibulldistributionoftimetofailureTheWeibullprobabilitydensityfunctioniswidelyusedinfailuremodelinginmechanicalpartsandelectroniccomponents.HeretheWeibulldistributionwithtwoparametersisusedtosimulatereliabilityofthesystemthatisundergoingmaintenance,thatis,thetime-to-failuredensityfunctionofsystemsconstitutedpartsis1()exp,0xxfxx=.(7)InEq.(7),istheshapeparameter,isthescaleparameter.xistime,whoseunitecanbehours,days,oryears.FivefailuredensityfunctionswiththeirWeibullparameters10,1,2,3,4,5=aredescribedinFig.1.Itisshownthatislarge,beforeserviceageofpartsarrivesattheexpectedvalue,failureprobabilityofpartsisextremelylow.Whereas,issmall,manypartsfailsinshorttimeofservice.3.2ReliabilitysimulationDifferentmaintenanceintervalofthemechanicalsystemanddifferenttime-to-failuredensityfunctionofitspartsareselectedtosimulatereliabilityofthesystemshownasFig.2Fig.4.Fig.2showshowsimulationtimestep(maintenanceinterval)affectssystemreliability,theplotsshowncorrespondtomaintenanceinterval0.5,1,2=,andwithWeibulldistributionparameters4,10=.Fig.3plotstheinfluenceofthescaleparameterofWeibulldistributiononsystemreliability,andfourcurvesrepresentfourdifferenttypepartscorrespondingtoaconstantvalueofequalto4pairedwithvalueof8,10,12,15respectively.Fig.4revealshowtheshapeparameterofWeibulldistributionaffectssystemreliability,andWeibulldistributionparametersoffivecurvesare10,=1,2,3,4,5=.Correspondingly,theirreplacementratecurvesofsystemspartsforthesetime-to-failuredensitydistributionfunctionsareplottedinFig.5.Additionally,inFig.3Fig.5,maintenanceintervalis1=.Fig.1.WeibullprobabilitydistributionsFig.2.SystemreliabilityR(t)withFig.3.SystemreliabilityR(t)withSeveralcharacteristicsofthesefiguresareofinterest.First,thereliabilityandreplacementrateeventuallyreachessteadystate.ThisagreeswithDrenicksTheorem,whichCHINESEJOURNALOFMECHANICALENGINEERING597statesthesuperpositionofaninfinitenumberofindependentFig.4.SystemreliabilityR(t)withFig.5.Partreplacementratep0(t)equilibriumrenewalprocessishomogeneousPoissonprocess.Duringtheinitialstageofsystemservice,partsofthesystemare“new”,then,become“old”.Theportionofpartsthatfailgraduallyincreases,thusthepartreplacementrateincreasesandsystemreliabilitywilldropmonotonically.Withthereplacementofasignificantportionofthepopulation,portionofpartsthatfailwilldecrease,thusthepartreplacementratewilldropandthesystemreliabilitywillriseuntilthisoscillationisoverandnextoscillationbegins.Aftersomeoscillations,thepopulationbecomesmoreage-diversifiedwitheachoscillation,andtheagedistributionapproachessteady.Atthattime,theoscillationsinreplacementrateandsystemreliabilitydiminish.ComparedFig.4withFig.5,itisshownthatthetrendofreplacementrateiscontrarytothechangeofsystemreliability.Whensystemreliabilityincreases,partreplacementratereduces.Otherwise,assystemreliabilityreduces,partreplacementrateincreases.Secondly,thesteadystatevalueandthedegreeofoscillationofthesystemreliabilitydependonmaintenanceinterval.AsFig.2shows,thereliabilityrisesasmaintenanceintervaldecreasessincepartsthatfailarebeingreplacedmorequickly.Theshorterthemaintenanceintervalis,thehigherreliabilityis,andthesmalleroscillationsare.However,frequentrepairswillresultinhighermaintenancecost.Thirdly,thesteadystatevalueofthesystemreliabilitydependsontheparametersofWeibulldistribution.Thedependenceonisnotsurprising,highervaluesofforagivensetofyieldhighervaluesforexpecttimetofailureandthuslowerreplacementrateandhigherreliability.Moreinterestingly,withtheincreaseofthevalueof,thesteadyvaluesofreplacementratedecreaseandthesteadyvaluesofreliabilityincrease.Fourth,thedegreeofoscillationofsystemreliabilitydependsontheparametersofWeibulldistribution.Althoughtheinfluenceofonoscillationscanbeneglected,theinfluenceofonoscillationsshouldbepaidspecialattentionto.Biggervalueofdenotesthatfailurerateofpartsislowerbeforeserv
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園小班新學期活動計劃
- 酒店成本控制的數(shù)字化與可持續(xù)管理研究-全面剖析
- 照明設備運維管理-全面剖析
- 物聯(lián)網(wǎng)在設備預測性維護中的應用-全面剖析
- 六年級書法教學資源開發(fā)計劃
- 信息技術(shù)提升工程2.0之旅游行業(yè)信息化計劃
- 幼兒園園本教研活動計劃
- 快消品行業(yè)2025年包裝可持續(xù)發(fā)展政策與市場前景報告
- 2025年碳酸甲乙酯項目合作計劃書
- 城市貨運配送管理方案與實施-范文
- 四年級美術(shù)國考測試題附有答案
- 專題八 概率與統(tǒng)計(2020-2024)五年高考《數(shù)學》真題分類匯編(解析版)
- 供貨保證措施以及應急保障措施
- 任務6-2 機場安檢崗位的設置課件講解
- 倫理與社會責任智慧樹知到期末考試答案章節(jié)答案2024年浙江大學
- (高清版)JTGT 3610-2019 公路路基施工技術(shù)規(guī)范
- 物聯(lián)網(wǎng)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年西安交通大學
- (正式版)SHT 3075-2024 石油化工鋼制壓力容器材料選用規(guī)范
- 幼兒園大班語言《睡睡鎮(zhèn)》課件
- 2024年山東省濟南市市中區(qū)中考二模地理試卷
- 人教版一年級《天地人你我他》課件
評論
0/150
提交評論