




已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Zero-momentpointtrajectorymodelingofabipedwalkingrobotusinganadaptiveneuro-fuzzysystemD.Kim,S.-J.SeoandG.-T.ParkAbstract:Abipedalarchitectureishighlysuitableforarobotbuilttoworkinhumanenvironmentssincesucharobotwillfindavoidingobstaclesarelativelyeasytask.However,thecomplexdynamicsinvolvedinthewalkingmechanismmakethecontrolofsucharobotachallengingtask.Thezero-momentpoint(ZMP)trajectoryintherobotsfootisasignicantcriterionfortherobotsstabilityduringwalking.IftheZMPcouldbemeasuredon-linethenitbecomespossibletocreatestablewalkingconditionsfortherobotandherealsostablycontroltherobotbyusingthemeasuredZMP,values.ZMPdataismeasuredinreal-timesituationsusingabipedwalkingrobotandthisZMPdataisthenmodelledusinganadaptiveneuro-fuzzysystem(ANFS).Naturalwalkingmotionsonatlevelsurfacesandupanddowna10slopearemeasured.ThemodellingperformanceoftheANFSisoptimizedbychangingthemembershipfunctionsandtheconsequentpartofthefuzzyrules.TheexcellentperformancedemonstratedbytheANFSmeansthatitcannotonlybeusedtomodelrobotmovementsbutalsotocontrolactualrobots.1IntroductionThebipedalstructureisoneofthemostversatilesetupsforawalkingrobot.Abiped,robothasalmostthesamemovementmechanismsasahumananditabletooperateinenvironmentscontainingstairs,obstaclesetc.However,thedynamicsinvolvedarehighlynonlinear,complexandunstable.Thus,itisdifculttogenerateahuman-likewalkingmotion.Therealisationofhuman-likewalkingrobotsisanareaofconsiderableactivity14.Incontrasttoindustrialrobotmanipulators,theinteractionbetweenawalkingrobotandthegroundiscomplex.Theconceptofazero-momentpoint(ZMP)2hasbeenshowntobeusefulinthecontrolofthisinteraction.ThetrajectoryoftheZMPbeneaththerobotfootduringawalkisaftertakentobeanindicationofthestabilityofthewalk16.UsingtheZMPwecansynthesisethewalkingpatternsofbipedrobotsanddemonstrateawalkingmotionwithactualrobots.Thus,theZMPcriteriondictatesthedynamicstabilityofabipedrobot.TheZMPrepresentsthepointatwhichthegroundreactionforceistakentooccur.ThelocationoftheZMPcanbecalculatedusingamodeloftherobot.However,itispossiblethattherecanbealargeerrorbetweentheactualZMPvalueandthecalculatedvalue,duetodeviationsinthephysicalparametersbetweenthemathematicalmodelandtherealmachine.Thus,theactualZMPshouldbemeasuredespeciallyifitistobeusedinatoparametersacontrolmethodforstablewalking.InthisworkactualZMPdatatakenthroughoutthewholewalkingcycleareobtainedfromapracticalbipedwalingrobot.Therobotwillbetestedbothonaatoorandalsoon10slopes.Anadaptiveneuro-fuzzysystem(ANFS)willbeusedtomodeltheZMPtrajectorydatatherebyallowingitsusetocontrolacomplexrealbipedwalkingrobot.2Bipedwalkingrobot2.1DesignofthebipedwalkingrobotWehavedesignedandimplementedthebipedwalkingrobotshowninFig.1.Therobothas19joints.ThekeydimensionsoftherobotarealsoshowninFig.1.Theheightandthetotalweightareabout380mmand1700gincludingbatteries,respectively.Theweightoftherobotisminimisedbyusingaluminiuminitsconstruction.EachjointisdrivenbyaRCservomotorthatconsistsofaDCmotor,gearsandasimplecontroller.EachoftheRCservomotorsismountedinalinkedstructure.Thisstructureensuresthattherobotisstable(i.e.willnotfalldowneasily)andgivestherobotahuman-likeappearance.AblockdiagramofourrobotsystemisshowninFig.2.Outrobotisabletowalkatarateofonestep(48mm)every1.4sonaatoororanshallowslopes.ThespecicationsoftherobotarelistedinTable1.ThewalkingmotionsoftherobotareshowninFigs.36.-Figures3and4areshowfrontandsideviewsoftherobot,respectivelywhentherobotisonaatsurface.Figure5isasnapshotoftherobotwalkingdownaslopewhereasFig.6isasnapshotoftherobotwalkingupaslope.ThelocationsofthejointsduringmotionareshowninFig.7.ThemeasuredZMPtrajectoryisobtainedfromten-degree-of-freedom(DOF)dataasshowninFig.7.TwodegreesoffreedomareassignedtothehipsandanklesandoneDOFtoeachknee.Usingthesejointangles,acyclicwalkingpatternhasbeenrealised.Ourrobotisabletowalkcontinuouslywithoutfallingdown.Thejointanglesinthefour-stepmotionofourrobotaresummarisedintheAppendix.2.2ZMPmeasurementsystemTheZMPtrajectoryinarobotfootisasignicantcriterionforthestabilityofthewalk.Inmanystudies,ZMPcoordinatesarecomputedusingamodeloftherobotandinformationfromtheencodersonthejoints.However,weemployedamoredirectapproachwhichistousedatameasuredusingsensorsmountedontherobotsfeet.Thedistributionofthegroundisreactionforcebeneaththerobotsfootiscomplicated.However,atanypointPonthesoleofthefoottothereactioncanberepresentedbyaforceNandmomentM,asshowninFig.8.TheZMPissimplythecentreofthepressureofthefootontheground,andthemomentappliedbythegroundaboutthispointiszero.Inotherwords,thepointPonthegroundisthepointatwhichthenetmomentoftheinertialandgravityforceshasnocomponentalongtheaxesparalleltotheground1,7.Figure9illustratestheusedsensorsandtheirplacementonthesoleoftherobotsfoot.ThetypeofforcesensorusedinourexperimentsisaFlexiForceA201sensor8.Theyareattachedtothefourcornersoftheplatethatconstitutesthesoleofthefoot.SensorsignalsaredigitisedbyanADCboard,withasamplingtimeof10ms.Measurementsarecarriedoutinrealtime.Thefootpressureisobtainedbysummingtheforcesignals.UsingthesensordataitiseasytocalculatetheactualZMPvalues.TheZMPsinthelocalfootcoordinateframearecomputedusing(1).Whereeachfiistheforceatasensorriisthesensorpositionwhichisavector.ThesearedenedinFig.10.Inthegure,Oistheoriginofthefootcoordinateframewhichislocatedatthelower-left-handcornertheleftfoot.ExperimentalresultsareshowninFigs.1116.Figures11,13and15showthex-coordinateandy-coordinateoftheactualZMPpositionsforthefour-stepmotionoftherobotwalkingonaatoorandalsodownandupaslopeof10,respectively.Figures12,14and16showntheZMPtrajectoryoftheone-stepmotionoftherobotusingtheactualZMPpositionsshowninFigs.11,13and15.Asshowninthetrajectories,theZMPsexistinarectangulardomainshownbyasolidline.Thus,thepositionsoftheZMPsarewithintherobotsfootandhencetherobotisstable.3ZMPtrajectorymodellingInmanyscienticproblemsanessentialsteptowardstheirsolutionistoaccomplishthemodellingofthesystemunderinvestigation.Theimportantroleofmodellingistoestablishempiricalrelationshipsbetweenobservedvariables.Thecomplexdynamicsinvolvedinmakingarobotwalkmakethecontroloftherobotcontrolachallengingtask.However,ifthehighlynonlinearandcomplexdynamicscanbecloselyproducedthenthismodellingcanbeusedinthecontroloftherobot.Inaddition,modelling,canevenbeusedinrobustintelligentcontroltominimisedisturbancesandnoise.3.1ANFSFuzzymodellingtechniqueshavebecomeanactiveresearchareainrecentyearsbecauseoftheirsuccessfulapplicationtocomplex,ill-denedanduncertainsystemsinwhichconventionalmathematicalmodelsfailtogivesatisfactoryresults9.InthislightweintendtouseasystemtomodeltheZMPtrajectory.Thefuzzyinferencesystemisapopularcomputingframeworkthatisbasedontheconceptsoffuzzysettheory,fuzzyif-thenrules,andfuzzyreasoning.WewillusetheSugenofuzzymodelinwhichsinceeachrulehasacrispoutput,theoveralloutputisobtainedviaaweightedaverage,thusavoidingthetime-consumingprocessofdefuzzication.Whenweconsiderfuzzyrulesinthefuzzymodel,theconsequentpartcanbeexpressedbyeitheraconstantoralinearpolynomial.ThedifferentformsofpolynomialsthatcanbeusedinthefuzzysystemaresummarisedinTable2.Themodellingperformancedependsonthetypeofconsequentpolynomialusedinthemodelling.Moreover,wecanexploitvariousformsofmembershipfunctions(MFs),suchastriangularandGaussian,forthefuzzysetinthepremisepartofthefuzzyrules.Theseareanotherfactorthatcontributestotheexibilityoftheproposedapproach.ThetypesofthepolynomialareasfollowsAblockdiagramofthemodellingsystemisshowninFig.17.Theproposedmethodisrstusedtomodelandthencontrolapracticalbipedwalkingrobot.Toobtainthefuzzyrulesforthefuzzymodellingsystemwemustnotesthatthenonlinearsystemtobeidentiedisabipedwalkingrobotwithteninputvariablesandeachinputvariableshastwofuzzysets,respectively.Forthefuzzymodel,theif-thenrulesareasfollows:whereAi,Bi,,Jiinthepremisepartoftheruleshavelinguisticvalues(suchassmallorbig)associatedwiththeinputvariable,x1,x2,x10;respectively.Fj(x1,x2,x10);istheconstant,orrst-orderconsequentpolynomialfunctionforthejthrule.AsdepictedinFig.18,twotypesofMFswereexamined.OneisthetriangularandtheotherisGaussian.Figure19isanadaptiveneuro-fuzzyinferencesystem10architecturethatisequivalenttotheten-inputfuzzymodelconsideredhere,inwhicheachinputisassumedtohaveoneofthetwoMFsshowninFig.18.NodeslabelledPgivetheproductofalltheincomingsignalsandtheselabelledNcalculatetheratioofacertainrulesringstrengthtothesumofalltherulesringstrengths.ParametervariationinANFISisoccuredusingeitheragradientdescentalgorithmorarecursiveleast-squaresestimationalgorithmtoadjustboththepremiseandconsequentparametersiteratively.However,wedonotusethecomplexhybridlearningalgorithmbutinsteadusethegeneralleast-squaresestimationalgorithmandonlydeterminethecoefcientsintheconsequentpolynomialfunction.3.2SimulationresultsApproximatelymodelswereconstructedusingtheANFS.Thenaccuracywasquantiedintermsoftheremean-squarederror(MSE),values.TheANFSwasappliedtomodeltheZMPtrajectoryofabipedwalkingrobotusingdatameasuredfromoutrobot.TheperformanceoftheANFSwasoptimisedbywaryingtheMFandconsequenttypeinthefuzzyrule.ThemeasuredZMPtrajectorydatafromourrobot(showninFigs.3241AintheAppendix)areusedastheprocessparameters.WhentriangularandGaussianMFsareusedinthepremisepartandaconstantintheconsequentpartthen,thecorrespondingMSEvaluesarelistedinTable3.WehaveplattedourresultsinFigs.2025.ThegeneratedZMPpositionsfromtheANFSareshowninFigs.20,22and24foraatleveloor,walkingdowna10slopeandwalkingupa10slope,respectively.InFigs.21,23and25,wecanseethecorrespondingZMPtrajectorieswhicharegeneratedfromtheANFS.Forsimplicity,theprocessparameterofbothkneescanbeignored.Asaresult,wecanreducethedimensionofthefuzzyrulesandtherebylowerthecomputationalburden.InthiscasethesimulationconditionsoftheANFSanditscorrespondingMSEvaluesaregiveninTable4.FromtheFiguresandTablesthatpresentthesimu
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外貿(mào)英語(yǔ)函電全套課件教學(xué)
- 2023-2024學(xué)年廣西桂林、北海聯(lián)考高二下學(xué)期4月期中考試語(yǔ)文試題(解析版)
- 探秘大雪節(jié)氣
- 塑造未來(lái):初二學(xué)習(xí)規(guī)劃
- 碩士之路指南
- 內(nèi)蒙古民族幼兒師范高等??茖W(xué)校《生物醫(yī)學(xué)檢驗(yàn)儀器》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津工程職業(yè)技術(shù)學(xué)院《兒童發(fā)展教育原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東省煙臺(tái)市重點(diǎn)名校2025屆普通高中質(zhì)量檢測(cè)試題(二)物理試題含解析
- 三門(mén)峽市澠池縣2025屆四年級(jí)數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析
- 山西工商學(xué)院《介入放射基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中醫(yī)治療面癱課件
- 電商平臺(tái)對(duì)用戶交易糾紛的處理和解決方案
- 項(xiàng)目式學(xué)習(xí)在初中散文教學(xué)中的應(yīng)用研究
- 腦動(dòng)靜脈畸形演示課件
- 環(huán)泊酚注射液-臨床用藥解讀
- 社交禮儀與合作精神的主題班會(huì)
- 智慧社區(qū)平臺(tái)運(yùn)營(yíng)方案
- 民間非營(yíng)利組織會(huì)計(jì)培訓(xùn)
- 不良資產(chǎn)項(xiàng)目律師法律盡調(diào)報(bào)告(模板)
- 產(chǎn)品借用申請(qǐng)表
- 醫(yī)院院內(nèi)緊急意外事件應(yīng)急預(yù)案(整理)
評(píng)論
0/150
提交評(píng)論