外文翻譯--關(guān)于裝載適應(yīng)性神經(jīng)模糊系統(tǒng)的有兩足行走的機(jī)器人的零刻點(diǎn)彈道造型 英文版.doc_第1頁(yè)
外文翻譯--關(guān)于裝載適應(yīng)性神經(jīng)模糊系統(tǒng)的有兩足行走的機(jī)器人的零刻點(diǎn)彈道造型 英文版.doc_第2頁(yè)
外文翻譯--關(guān)于裝載適應(yīng)性神經(jīng)模糊系統(tǒng)的有兩足行走的機(jī)器人的零刻點(diǎn)彈道造型 英文版.doc_第3頁(yè)
外文翻譯--關(guān)于裝載適應(yīng)性神經(jīng)模糊系統(tǒng)的有兩足行走的機(jī)器人的零刻點(diǎn)彈道造型 英文版.doc_第4頁(yè)
外文翻譯--關(guān)于裝載適應(yīng)性神經(jīng)模糊系統(tǒng)的有兩足行走的機(jī)器人的零刻點(diǎn)彈道造型 英文版.doc_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Zero-momentpointtrajectorymodelingofabipedwalkingrobotusinganadaptiveneuro-fuzzysystemD.Kim,S.-J.SeoandG.-T.ParkAbstract:Abipedalarchitectureishighlysuitableforarobotbuilttoworkinhumanenvironmentssincesucharobotwillfindavoidingobstaclesarelativelyeasytask.However,thecomplexdynamicsinvolvedinthewalkingmechanismmakethecontrolofsucharobotachallengingtask.Thezero-momentpoint(ZMP)trajectoryintherobotsfootisasignicantcriterionfortherobotsstabilityduringwalking.IftheZMPcouldbemeasuredon-linethenitbecomespossibletocreatestablewalkingconditionsfortherobotandherealsostablycontroltherobotbyusingthemeasuredZMP,values.ZMPdataismeasuredinreal-timesituationsusingabipedwalkingrobotandthisZMPdataisthenmodelledusinganadaptiveneuro-fuzzysystem(ANFS).Naturalwalkingmotionsonatlevelsurfacesandupanddowna10slopearemeasured.ThemodellingperformanceoftheANFSisoptimizedbychangingthemembershipfunctionsandtheconsequentpartofthefuzzyrules.TheexcellentperformancedemonstratedbytheANFSmeansthatitcannotonlybeusedtomodelrobotmovementsbutalsotocontrolactualrobots.1IntroductionThebipedalstructureisoneofthemostversatilesetupsforawalkingrobot.Abiped,robothasalmostthesamemovementmechanismsasahumananditabletooperateinenvironmentscontainingstairs,obstaclesetc.However,thedynamicsinvolvedarehighlynonlinear,complexandunstable.Thus,itisdifculttogenerateahuman-likewalkingmotion.Therealisationofhuman-likewalkingrobotsisanareaofconsiderableactivity14.Incontrasttoindustrialrobotmanipulators,theinteractionbetweenawalkingrobotandthegroundiscomplex.Theconceptofazero-momentpoint(ZMP)2hasbeenshowntobeusefulinthecontrolofthisinteraction.ThetrajectoryoftheZMPbeneaththerobotfootduringawalkisaftertakentobeanindicationofthestabilityofthewalk16.UsingtheZMPwecansynthesisethewalkingpatternsofbipedrobotsanddemonstrateawalkingmotionwithactualrobots.Thus,theZMPcriteriondictatesthedynamicstabilityofabipedrobot.TheZMPrepresentsthepointatwhichthegroundreactionforceistakentooccur.ThelocationoftheZMPcanbecalculatedusingamodeloftherobot.However,itispossiblethattherecanbealargeerrorbetweentheactualZMPvalueandthecalculatedvalue,duetodeviationsinthephysicalparametersbetweenthemathematicalmodelandtherealmachine.Thus,theactualZMPshouldbemeasuredespeciallyifitistobeusedinatoparametersacontrolmethodforstablewalking.InthisworkactualZMPdatatakenthroughoutthewholewalkingcycleareobtainedfromapracticalbipedwalingrobot.Therobotwillbetestedbothonaatoorandalsoon10slopes.Anadaptiveneuro-fuzzysystem(ANFS)willbeusedtomodeltheZMPtrajectorydatatherebyallowingitsusetocontrolacomplexrealbipedwalkingrobot.2Bipedwalkingrobot2.1DesignofthebipedwalkingrobotWehavedesignedandimplementedthebipedwalkingrobotshowninFig.1.Therobothas19joints.ThekeydimensionsoftherobotarealsoshowninFig.1.Theheightandthetotalweightareabout380mmand1700gincludingbatteries,respectively.Theweightoftherobotisminimisedbyusingaluminiuminitsconstruction.EachjointisdrivenbyaRCservomotorthatconsistsofaDCmotor,gearsandasimplecontroller.EachoftheRCservomotorsismountedinalinkedstructure.Thisstructureensuresthattherobotisstable(i.e.willnotfalldowneasily)andgivestherobotahuman-likeappearance.AblockdiagramofourrobotsystemisshowninFig.2.Outrobotisabletowalkatarateofonestep(48mm)every1.4sonaatoororanshallowslopes.ThespecicationsoftherobotarelistedinTable1.ThewalkingmotionsoftherobotareshowninFigs.36.-Figures3and4areshowfrontandsideviewsoftherobot,respectivelywhentherobotisonaatsurface.Figure5isasnapshotoftherobotwalkingdownaslopewhereasFig.6isasnapshotoftherobotwalkingupaslope.ThelocationsofthejointsduringmotionareshowninFig.7.ThemeasuredZMPtrajectoryisobtainedfromten-degree-of-freedom(DOF)dataasshowninFig.7.TwodegreesoffreedomareassignedtothehipsandanklesandoneDOFtoeachknee.Usingthesejointangles,acyclicwalkingpatternhasbeenrealised.Ourrobotisabletowalkcontinuouslywithoutfallingdown.Thejointanglesinthefour-stepmotionofourrobotaresummarisedintheAppendix.2.2ZMPmeasurementsystemTheZMPtrajectoryinarobotfootisasignicantcriterionforthestabilityofthewalk.Inmanystudies,ZMPcoordinatesarecomputedusingamodeloftherobotandinformationfromtheencodersonthejoints.However,weemployedamoredirectapproachwhichistousedatameasuredusingsensorsmountedontherobotsfeet.Thedistributionofthegroundisreactionforcebeneaththerobotsfootiscomplicated.However,atanypointPonthesoleofthefoottothereactioncanberepresentedbyaforceNandmomentM,asshowninFig.8.TheZMPissimplythecentreofthepressureofthefootontheground,andthemomentappliedbythegroundaboutthispointiszero.Inotherwords,thepointPonthegroundisthepointatwhichthenetmomentoftheinertialandgravityforceshasnocomponentalongtheaxesparalleltotheground1,7.Figure9illustratestheusedsensorsandtheirplacementonthesoleoftherobotsfoot.ThetypeofforcesensorusedinourexperimentsisaFlexiForceA201sensor8.Theyareattachedtothefourcornersoftheplatethatconstitutesthesoleofthefoot.SensorsignalsaredigitisedbyanADCboard,withasamplingtimeof10ms.Measurementsarecarriedoutinrealtime.Thefootpressureisobtainedbysummingtheforcesignals.UsingthesensordataitiseasytocalculatetheactualZMPvalues.TheZMPsinthelocalfootcoordinateframearecomputedusing(1).Whereeachfiistheforceatasensorriisthesensorpositionwhichisavector.ThesearedenedinFig.10.Inthegure,Oistheoriginofthefootcoordinateframewhichislocatedatthelower-left-handcornertheleftfoot.ExperimentalresultsareshowninFigs.1116.Figures11,13and15showthex-coordinateandy-coordinateoftheactualZMPpositionsforthefour-stepmotionoftherobotwalkingonaatoorandalsodownandupaslopeof10,respectively.Figures12,14and16showntheZMPtrajectoryoftheone-stepmotionoftherobotusingtheactualZMPpositionsshowninFigs.11,13and15.Asshowninthetrajectories,theZMPsexistinarectangulardomainshownbyasolidline.Thus,thepositionsoftheZMPsarewithintherobotsfootandhencetherobotisstable.3ZMPtrajectorymodellingInmanyscienticproblemsanessentialsteptowardstheirsolutionistoaccomplishthemodellingofthesystemunderinvestigation.Theimportantroleofmodellingistoestablishempiricalrelationshipsbetweenobservedvariables.Thecomplexdynamicsinvolvedinmakingarobotwalkmakethecontroloftherobotcontrolachallengingtask.However,ifthehighlynonlinearandcomplexdynamicscanbecloselyproducedthenthismodellingcanbeusedinthecontroloftherobot.Inaddition,modelling,canevenbeusedinrobustintelligentcontroltominimisedisturbancesandnoise.3.1ANFSFuzzymodellingtechniqueshavebecomeanactiveresearchareainrecentyearsbecauseoftheirsuccessfulapplicationtocomplex,ill-denedanduncertainsystemsinwhichconventionalmathematicalmodelsfailtogivesatisfactoryresults9.InthislightweintendtouseasystemtomodeltheZMPtrajectory.Thefuzzyinferencesystemisapopularcomputingframeworkthatisbasedontheconceptsoffuzzysettheory,fuzzyif-thenrules,andfuzzyreasoning.WewillusetheSugenofuzzymodelinwhichsinceeachrulehasacrispoutput,theoveralloutputisobtainedviaaweightedaverage,thusavoidingthetime-consumingprocessofdefuzzication.Whenweconsiderfuzzyrulesinthefuzzymodel,theconsequentpartcanbeexpressedbyeitheraconstantoralinearpolynomial.ThedifferentformsofpolynomialsthatcanbeusedinthefuzzysystemaresummarisedinTable2.Themodellingperformancedependsonthetypeofconsequentpolynomialusedinthemodelling.Moreover,wecanexploitvariousformsofmembershipfunctions(MFs),suchastriangularandGaussian,forthefuzzysetinthepremisepartofthefuzzyrules.Theseareanotherfactorthatcontributestotheexibilityoftheproposedapproach.ThetypesofthepolynomialareasfollowsAblockdiagramofthemodellingsystemisshowninFig.17.Theproposedmethodisrstusedtomodelandthencontrolapracticalbipedwalkingrobot.Toobtainthefuzzyrulesforthefuzzymodellingsystemwemustnotesthatthenonlinearsystemtobeidentiedisabipedwalkingrobotwithteninputvariablesandeachinputvariableshastwofuzzysets,respectively.Forthefuzzymodel,theif-thenrulesareasfollows:whereAi,Bi,,Jiinthepremisepartoftheruleshavelinguisticvalues(suchassmallorbig)associatedwiththeinputvariable,x1,x2,x10;respectively.Fj(x1,x2,x10);istheconstant,orrst-orderconsequentpolynomialfunctionforthejthrule.AsdepictedinFig.18,twotypesofMFswereexamined.OneisthetriangularandtheotherisGaussian.Figure19isanadaptiveneuro-fuzzyinferencesystem10architecturethatisequivalenttotheten-inputfuzzymodelconsideredhere,inwhicheachinputisassumedtohaveoneofthetwoMFsshowninFig.18.NodeslabelledPgivetheproductofalltheincomingsignalsandtheselabelledNcalculatetheratioofacertainrulesringstrengthtothesumofalltherulesringstrengths.ParametervariationinANFISisoccuredusingeitheragradientdescentalgorithmorarecursiveleast-squaresestimationalgorithmtoadjustboththepremiseandconsequentparametersiteratively.However,wedonotusethecomplexhybridlearningalgorithmbutinsteadusethegeneralleast-squaresestimationalgorithmandonlydeterminethecoefcientsintheconsequentpolynomialfunction.3.2SimulationresultsApproximatelymodelswereconstructedusingtheANFS.Thenaccuracywasquantiedintermsoftheremean-squarederror(MSE),values.TheANFSwasappliedtomodeltheZMPtrajectoryofabipedwalkingrobotusingdatameasuredfromoutrobot.TheperformanceoftheANFSwasoptimisedbywaryingtheMFandconsequenttypeinthefuzzyrule.ThemeasuredZMPtrajectorydatafromourrobot(showninFigs.3241AintheAppendix)areusedastheprocessparameters.WhentriangularandGaussianMFsareusedinthepremisepartandaconstantintheconsequentpartthen,thecorrespondingMSEvaluesarelistedinTable3.WehaveplattedourresultsinFigs.2025.ThegeneratedZMPpositionsfromtheANFSareshowninFigs.20,22and24foraatleveloor,walkingdowna10slopeandwalkingupa10slope,respectively.InFigs.21,23and25,wecanseethecorrespondingZMPtrajectorieswhicharegeneratedfromtheANFS.Forsimplicity,theprocessparameterofbothkneescanbeignored.Asaresult,wecanreducethedimensionofthefuzzyrulesandtherebylowerthecomputationalburden.InthiscasethesimulationconditionsoftheANFSanditscorrespondingMSEvaluesaregiveninTable4.FromtheFiguresandTablesthatpresentthesimu

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論