




已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER20081199Real-TimeAdaptiveMotionPlanning(RAMP)ofMobileManipulatorsinDynamicEnvironmentsWithUnforeseenChangesJohnVannoyandJingXiao,SeniorMember,IEEEAbstractThispaperintroducesanovelandgeneralreal-timeadaptivemotionplanning(RAMP)approachsuitableforplan-ningtrajectoriesofhigh-DOForredundantrobots,suchasmobilemanipulators,indynamicenvironmentswithmovingobstaclesofunknowntrajectories.TheRAMPapproachenablessimultaneouspathandtrajectoryplanningandsimultaneousplanningandexe-cutionofmotioninrealtime.Itfacilitatesreal-timeoptimizationoftrajectoriesundervariousoptimizationcriteria,suchasmin-imizingenergyandtimeandmaximizingmanipulability.Italsoaccommodatespartiallyspecifiedtaskgoalsofrobotseasily.Theapproachexploitsredundancyinredundantrobots(suchaslo-comotionversusmanipulationinamobilemanipulator)throughloosecouplingofrobotconfigurationvariablestobestachieveob-stacleavoidanceandoptimizationobjectives.TheRAMPapproachhasbeenimplementedandtestedinsimulationoveradiversesetoftaskenvironments,includingenvironmentswithmultiplemobilemanipulators.Theresults(andalsotheaccompanyingvideo)showthattheRAMPplanner,withitshighefficiencyandflexibility,notonlyhandlesasinglemobilemanipulatorwellindynamicenviron-mentswithvariousobstaclesofunknownmotionsinadditiontostaticobstacles,butcanalsoreadilyandeffectivelyplanmotionsforeachmobilemanipulatorinanenvironmentsharedbymultiplemobilemanipulatorsandothermovingobstacles.IndexTermsAdaptive,dynamicobstaclesofunknownmotion,loosecoupling,mobilemanipulators,partiallyspecifiedgoal,realtime,redundantrobots,trajectoryoptimization.I.INTRODUCTIONMOTIONPLANNINGisafundamentalprobleminrobotics1,2concernedwithdevisingadesirablemo-tionforarobottoreachagoal.Motionplanningforhigh-DOFarticulatedmanipulatorsormobilemanipulatorsismorechal-lengingthanformobilerobotsbecausethehigh-dimensionalconfigurationspaceofarobothaslittleornoresemblancetothephysicalspacethattherobotworksin,andhowtoconstructManuscriptreceivedMay16,2007;revisedDecember13,2007andMarch5,2008.FirstpublishedOctober10,2008;currentversionpublishedOctober31,2008.ThispaperwasrecommendedforpublicationbyAssociateEditorK.YamaneandEditorL.Parkeruponevaluationofthereviewerscomments.ApreliminarypartofthispaperwaspresentedattheIEEEInternationalCon-ferenceonIntelligentRobotsandSystems,Sendai,Japan,2004.TheauthorsarewiththeIntelligent,MultimediaandInteractiveSystems(IMI)Laboratory,DepartmentofComputerScience,UniversityofNorthCarolinaatCharlotte,Charlotte,NC28223USA(e-mail:;).Thispaperhassupplementarydownloadablematerialavailableat,providedbytheauthors:avideoshowingthereal-timeplanningandexecutionofmobilemanipulatormotionbyourRAMPalgorithm.Thisvideois14MBinsize.Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineat.DigitalObjectIdentifier10.1109/TRO.2008.2003277aconfigurationspacehigherthanthreedimensionsefficientlyremainsalargelyunsolvedproblem.A.RelatedResearchonMotionPlanningRandomizedalgorithms,suchasthepopularprobabilisticroadmap(PRM)method3andrapidlyexploringrandomtree(RRT)method4,arefoundtobeveryeffectiveinfindingacollision-freepathforarobotwithhighDOFsofflinebe-causesuchalgorithmsavoidbuildingtherobotsconfigurationspaceexplicitlybysamplingtheconfigurationspace.ThePRMmethodhasinspiredconsiderableworkonimprovingsamplingandroadmapconstruction2,includingarecentpaper5onproducingcompactroadmapstobettercapturethedifferentho-motopicpathgroups.Bybuildingatreeratherthanagraph,theRRTmethodismoresuitableforgeneratingapathinoneshotorgeneratingatrajectorydirectlyandthusmoresuitableforonlineoperation6.Bothmethodshaveseenmanyvariants2.Therearealsomethodsforpathplanningbasedonge-neticalgorithms(GAs),ormorebroadly,evolutionarycom-putation7,8,whicharegeneralframeworksofrandomizedsearchsubjecttouser-definedoptimizationcriteria.Suchop-timizationtechniqueshavebeenusedwidelyandsuccessfullyinmanyapplicationdomains8,9totackleNP-hardopti-mizationproblems.Therearetwomajorwaysofapplications.Onestraightforwardwayistomapaproblemintotheformsuitableforastandard,off-the-shelfGA,solveitbyrunningtheGA,andthen,maptheresultsbacktotheapplicationdo-main.Thisone-size-fit-allapproachisoftennoteffectivebe-causeitforcesartificialtransformationofaproblemintosome-thingelsethatisconfinedintheformatofastandardGAbutmaylosecertainimportantnatureoftheoriginalproblem.SomeGA-basedpathplanningmethods10,11adoptsuchanap-proach,whereC-spaceisdiscretizedintoagrid,andapathisintermsofafixed-lengthsequenceofgridpoints.AsthestandardGAoperatesonfixed-lengthbitstrings,searchisoftenveryslow.Amoreeffectiveapproachistoadoptthegeneralideaofevolutionarycomputationtosolveaprobleminamorenaturalandsuitablerepresentation.Thepathplanningmethodsreportedin1214belongtosuchacustomizedapproach.Areal-timepathplanningmethodisreportedin12for2DOFpointmobilerobots,whichisextendedin13for3DOFpointflyingrobotswithspecificconstraints.Amultiresolutionpathrepresentationisproposedin14forpathplanning.However,allevolution-aryalgorithmshaveanumberofparametersthatmustbesetappropriately,whichisoftennotatrivialtask.1552-3098/$25.002008IEEE1200IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER2008Unlikepathplanning,motionplanninghastoproduceanexecutabletrajectoryforarobotinconfigurationtimespace,orCT-space,andnotmerelyageometricalpath.Acommonapproachistoconducttrajectoryplanningonthebasisofapathgeneratedbyapathplanner.Anotableframeworkistheelasticstripmethod15,whichcandeformatrajectoryforarobotlocallytoavoidmovingobstaclesinsideacollision-free“tunnel”thatconnectstheinitialandgoallocationsoftherobotina3-Dworkspace.Sucha“tunnel”isgeneratedfromadecomposition-basedpathplanningstrategy16.Theotherapproachistoconductpathandtrajectoryplanningsimultaneously.However,mosteffortinthiscategoryisfocusedonofflinealgorithmsassumingthattheenvironmentiscompletelyknownbeforehand,i.e.,staticobjectsareknown,andmovingobjectsareknownwithknowntrajectories1720.Asfordealingwithunknownmovingobstacles,onlyrecentlysomemethodswereintroducedformobilerobots21,22.Thecombinationofmobilityandmanipulationcapabilitymakesamobilemanipulatorapplicabletoamuchwiderrangeoftasksthanafixed-basemanipulatororamobilerobot.Foramobilemanipulator,ataskgoalstateisoftenpartiallyspecifiedaseitheraconfigurationoftheend-effector,whichwecallaplace-to-placetask,oradesiredpath(ortrajectory)oftheend-effector,whichwecallacontour-followingtask,andthetargetlocation/pathofthebaseisoftenunspecified.Here,amajorissueofmotionplanningisthecoordinationofthemobilebaseandthemanipulator.Thisissue,asitinvolvesredundancyresolution,presentsbothchallengesandopportu-nities.Thereexistsarichliteratureaddressingthisissuefrommanyaspects.Someresearcherstreatthemanipulatorandthemobilebasetogetherasaredundantrobotinplanningitspathforplace-to-placetasks2325.Somefocusedonplanningasequenceof“commutationconfigurations”forthemobilebasewhentherobotwastoperformasequenceoftasks26,27subjecttovariousconstraintsandoptimizationcriteria.Othersfocusedoncoordinatingthecontrolofthemobilebaseandthemanipulatorinacontour-followingtask28,29bytryingtopositionthemobilebasetomaximizemanipulability.Manyconsiderednonholonomicconstraints.Whilemostoftheexistingworkassumesknownenviron-mentswithknownobstaclesforamobilemanipulator,afewresearchersconsideredlocalcollisionavoidanceofunknown,movingobstaclesonline.Onemethod30usedRRTasalocalplannertoupdatearoadmaporiginallygeneratedbyPRMtodealwithmovingobstacles.Forcontour-followingtasks,anef-ficientmethod31allowsthebasetoadjustitspathtoavoidamovingobstacleifpossiblewhilekeepingtheend-effectorfol-lowingacontour,suchasastraightline.Anothermethod29allowedthebasetopauseinordertoletanunexpectedobsta-clepasswhilethearmcontinueditscontour-followingmotionunderanevent-basedcontrolscheme.Othermethodsincludeonebasedonpotentialfield32toavoidunknownobstaclesandonebasedonaneuro-fuzzycontroller33tomodifythebasemotionlocallytoavoidamovingobstaclestably.Thereisalsoanonlineplannerforthespecialpurposeofplanningthemotionsoftworobotarmsgettingpartsfromaconveyerbelt34.However,wearenotawareofanyexistingworkthatcanplanmotionsofhigh-DOFrobotsgloballyamongmanyunknowndynamicobstacles.B.OurProblemandApproachPlanninghigh-DOFrobotmotioninsuchanenvironmentofmanyunknowndynamicobstaclesposesspecialchallenges.First,planninghastobedoneinrealtime,cannotbedoneof-fline,andcannotbebasedonacertainprebuiltmapbecausetheenvironmentisconstantlychanginginunforeseenways,i.e.,theconfigurationspaceobstaclesareunknownandchanging.Examplesofsuchenvironmentsincludealargepublicsquarefullofpeoplemovingindifferentways,awarehousefullofbusy-movingrobotsandhumanworkers,andsoon.Suchanenvironmentisverydifferentfromstaticorlargelystaticenvi-ronmentsorknowndynamicenvironments(i.e.,withotherob-jecttrajectoriesknown),wheremotionplanningcanreasonablyrelyonexploringC-space(forknownstaticenvironments)orCT-space(forknowndynamicenvironments)offline(suchasbyPRM).Theelasticstripmethodprovidestheflexibilitytomakesmalladjustmentsofarobotmotiontoavoidunknownmotionsofobstacles,iftheunderlyingtopologyoftheC-spacedoesnotchange.ForanenvironmentwithchangingC-spacetopologyinunknownways,aplannedpath/trajectorycanbeinvalidatedcompletelyatanytime,andthus,real-timeadaptiveglobalplan-ningcapabilityisrequiredformakingdrasticchangesofrobotmotion.Planningandexecutionofmotionshouldbesimulta-neousandbasedonsensingsothatplanninghastobeveryfastandalwaysabletoadapttochangesoftheenvironment.Bynature,totacklemotionplanninginanunknowndynamicenvironmentcannotresultinacompleteplanningalgorithm.Thatis,noalgorithmcanguaranteesuccessinsuchanunknownenvironment.Wecanonlystriveforarationalalgorithmthatservesasthe“bestdriverofahigh-DOFrobot,buteventhebestdrivercannotguaranteetobeaccident-freeifotherthingsintheenvironmentarenotunderhis/hercontrol.Thispaperaddressestheproblemofreal-timesimultaneouspathandtrajectoryplanningofhigh-DOFrobots,suchasmobilemanipulators,performinggeneralplace-to-placetasksinadynamicenvironmentwithobstaclemotionsunknown.Theobstaclemotionscanobstructeitherthebaseorthearmorbothofamobilemanipulator.Weintroduceauniqueandgeneralreal-timeadaptivemotionplanning(RAMP)approach.OurRAMPapproachisbuiltuponboththeideaofrandomizedplanningandthatoftheanytime,parallel,andoptimizedplanningofevolutionarycomputation,whileavoidingthedrawbacks.Theresultisauniqueandoriginalapproacheffectivefortheconcernedproblem.TheRAMPapproachhasthefollowingcharacteristics.1)WholetrajectoriesarerepresentedatonceinCT-spaceandconstantlyimprovedduringsimultaneousplan-ningandexecution,unlikealgorithmsthatbuildapath/trajectorysequentially(orincrementally)sothatawholepath/trajectorycanbecomeavailableonlyattheendoftheplanningprocess.OuranytimeplannercanprovideavalidtrajectoryquicklyandcontinuetoproducebetterVANNOYANDXIAO:REAL-TIMEADAPTIVEMOTIONPLANNING(RAMP)OFMOBILEMANIPULATORSINDYNAMICENVIRONMENTS1201trajectoriesatanylatertimetosuittheneedofreal-timeglobalplanning.2)Differentoptimizationcriteria(suchasminimizingen-ergyandtimeandoptimizingmanipulability)canbeaccommodatedflexiblyandeasilyinaseamlessfash-ion.Optimizationisdonedirectlyintheoriginal,con-tinuousCT-spaceratherthanbeingconfinedtoacertainlimitedgraphorroadmap.Trajectoriesareplannedandoptimizeddirectlyratherthanconditionaltotheresultsofpathplanning.3)Ourplannerisintrinsicallyparallelwithmultiplediversetrajectoriespresentallthetimetoallowinstant,andifnecessary,drasticadjustmentofrobotmotiontoadapttonewlysensedchangesintheenvironment.Thisisdiffer-entfromplannerscapableofonlylocaltrajectoryadjust-mentbasedonaknownsetofhomotopicpaths.Itisalsodifferentfromsequentialplanners,suchasanytimeA*search35,whichalsorequiresbuildingadiscretestatespaceforsearchalimitationthatourplannerdoesnothave.4)Trajectorysearchandevaluation(ofitsoptimality)areconstantlyadaptivetochangesbutbuiltupontheresultsofprevioussearch(i.e.,knowledgeaccumulated)tobeefficientforreal-timeprocessing.5)Asplanningandexecution(i.e.,robotmotionfollowingtheplannedresultsofar)aresimultaneous,partiallyfeasi-bletrajectoriesareallowed,andtherobotmayfollowthefeasiblepartofsuchatrajectory(ifitisthecurrentbest)andswitchtoabettertrajectorytoavoidtheinfeasiblepart.6)Withmultipletrajectoriesfromourplanner,eachtrajec-torycanendatadifferentgoallocationinagoalregion,i.e.,partiallyspecifiedgoals,ratherthanasinglegoalcon-figuration.7)Ourplannerrepresentsatrajectoryforaredundantrobot,suchasamobilemanipulator,aslooselycoupledtrajec-toriesofredundantvariablestotakeadvantageofthere-dundancyinordertobestachieveobstacleavoidanceandvariousoptimizationobjectives.Therestofthepaperisorganizedasfollows.SectionIIpro-videsanoverviewofourRAMPapproach;SectionsIIIandIVdescribeproblemrepresentationandinitialization;SectionVoutlinesouroptimizationcriteriafortrajectoryevaluationanddescribesthestrategiesforevaluation.SectionsVIandVIIde-scribethestrategiestoaltertrajectoriestoproducebetterones.SectionVIIIdescribeshowtheRAMPplannercancreateandpreserveadiversesetoftrajectories.SectionIXprovidesim-plementationandexperimentationresultsanddiscussesperfor-manceoftheplanner.SectionXconcludesthepaper.II.OVERVIEWOFTHERAMPAPPROACHOnebasicpremiseofourapproachisthattheplanningprocessandtheexecutionofmotionareinterweavingtoenablesimul-taneousrobotmotionplanningandexecution.ThisisachievedthroughouranytimeplanningalgorithmthatalwaysmaintainsasetofcompletetrajectoriesintheCT-spaceoftherobotcalledapopulation.Thefeasibilityandoptimalityofeachtrajectory,calledfitness,isevaluatedthroughanevaluationfunctioncod-ingtheoptimizationcriteria.Feasibilityreferstocollision-freeandsingularity-free.Bothinfeasibleandfeasibletrajectoriesareallowedinapopulation.Feasibletrajectoriesareconsideredfit-terthaninfeasibletrajectories.Withineachtype,trajectoriesarecomparedforoptimalityinfitness.Theinitialpopulationisacombinationofrandomlygeneratedanddeliberatelyseededtrajectories.Deliberatelyseededtrajec-toriesincludeonesconstructedtorepresentdistinctsubpopula-tionsinordertoachievecertaindiversityinthepopulation.Iftheenvironmentcontainsknownstaticobstacles,trajectoriesbasedonpreplannedfeasiblepathswithrespecttotheknownstaticobstaclescanalsobeincluded.SeeSectionIVformoredetails.Oncetheinitialpopulationisformed,itisthenimprovedtoafitterpopulationthroughiterationsofimprovements,calledgen-erations.Ineachgeneration,atrajectoryisrandomlyselectedandalteredbyarandomlyselectedmodificationoperatoramonganumberofdifferentmodificationoperators,andtheresultingtrajectorymaybeusedtoreplaceatrajectorythatisnotthefittesttoformanewgeneration.Thefittesttrajectoryisalwayskeptinthepopulationandcanonlyimprovefromgenerationtogeneration.Eachgenerationisalsocalledaplanningcycle.Toimprovethefitnessoftheinitialpopulation,anumberofinitialplanningcyclesmayberunbasedontheinitialsensinginformationoftheenvironmentbeforetherobotbeginsexecut-ingthefittesttrajectory.Therobotneednotwaitforafeasibletrajectorytoemerge;ifnofeasibletrajectoryisavailable,therobotwillbeginmovingalongthefittestinfeasibletrajectorywhilecontinuingthesearchforafitter,andhopefullywilllocateafeasibletrajectorybeforeitcomeswithinadistancethresholdDofthefirstpredictedcollisionorsingularityoftheexecutedtrajectory.Thisstrategymakessensebecause:1)thepresentlypredictedinfeasibletrajectorymaybecomefeasiblelaterandviceversa;2)astobedescribedlater,ourplannermakestherobotswitchtoabettertrajectoryifoneisavailable,andthus,beforetheinfeasiblepartofthecurrentlyfollowedtrajectoryisencountered,therobotmayalreadyswitchtoabettertrajectory;3)thestrategyallowslimitedsensing,inwhichtherobotmaynotsenseanobstacleuntilgettingcloser;and4)itprovidesameasureofsafetyintrajectoryevaluation(seeSectionV).Astherobotmoves,planningcontinuestoimprovethepopu-lationoftrajectoriesuntilthenextcontrolcycle,whentherobotcanswitchtoafittertrajectorysothatitalwaysfollowsthebesttrajectory.Forthatpurpose,eachtrajectoryisalwaysupdatedtostartfromthecurrentrobotconfigurationwiththecurrentvelocitywhenanewcontrolcyclebegins.Forthetrajectorythatisbeingfollowed,thismeansthattheexecutedportionofthetrajectoryisdroppedfromthetrajectory,whileforeveryothertrajectory,itmeansthatonlythestartingconfigurationandve-locityarechangedtherestoftheknotpointsonthetrajectory(seeSectionIII)remainintact.Notethateachcontrolcycleheredoesnotnecessarilyhavetobeaservocycleofthelow-levelcontroller.Ourcontrolcycle,whichishighlevelforcontrollingtherateofadaptation,canbelongerthanaservocycletoensurethatwithinacontrolcycle,therecanbemorethanoneplanningcycle.Thisisbecauseadaptationisguidedbyplanning.1202IEEETRANSACTIONSONROBOTICS,VOL.24,NO.5,OCTOBER2008Fig.1.Relationshipamongplanning,control,andsensingcycles.Changesinadynamicenvironmentaresensedandfedtotheplannerineachsensingcycle,whichleadtoupdatedfitnessvaluesoftrajectoriesinthesubsequentplanningcycles,andunknownmotionsofmovingobstaclesarepredictedinfitnessevaluationofrobottrajectories.Thepresenceofadiversepopu-lationofever-improvingtrajectoriesenablestherobottoquicklyadapttochangesintheenvironment.Itdoessobyfollowingthefittesttrajectoryundereachcircumstance:whenthecurrenttra-jectorythattherobotfollowsbecomesworseorcannolongerbefollowedduetoimminentcollision(i.e.,thethresholdDisreached),therobotmaynotneedtostopitsmotionandreplanfromscratch;rathertheplanneroftenmerelyneedstoswitchtherobottoafeasibleorbettertrajectoryinthepopulationswiftlyinaseamlessfashion.Thechosentrajectorycanbeofaverydifferenthomotopicgroupfromthepreviousonetodealwithdrasticandlargechanges.InthecasewhentherobotreachesDofthecurrenttrajectorybutfindsnobettertrajectorytoswitchto,itwillstopitsmotionatD,whichiscalledaforcedstop.However,theRAMPplanner(i.e.,therobots“thinking”process)neverstops,anditcontinuestoplanandsearchforabettertrajectoryfortherobot.Therobotresumesitsmotiononceabettertrajectoryisfound.Suchplanning/control/sensingcyclescontinuetointeractandmovetherobottowardagoalconfigurationinthebestpossiblewayinrealtime:improvingthetrajectoriesitfollowsifthereisnochangeintheenvironment,orbothadaptingandimprovingthetrajectori
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深入了解商務禮儀師試題及答案
- Adobe認證設計師考點體驗與修復試題及答案
- 酒店管理的市場細分與目標定位分析試題及答案
- 細致觀察的Adobe設計師考試試題及答案
- 電氣工程師資格證書考試的知識結(jié)構(gòu)分析試題及答案
- 高效復習的CAD工程師認證考試方法試題及答案
- 了解2024年Adobe考試中的數(shù)字資源運用試題及答案
- 智慧交通設施的數(shù)字技術(shù)應用考察試題及答案
- 小學生心理微課課件
- 焊接工程師考試動態(tài)試題及答案
- UL676標準中文版-2019水下燈具和接線盒UL標準中文版
- 《圖書館管理系統(tǒng)》課件
- 《人民幣國際化》課件
- 北京市房屋租賃合同自行成交版北京市房屋租賃合同自行成交版
- 浙江杭州地區(qū)重點中學2025屆高三六校第一次聯(lián)考英語試卷含解析
- 河北省衡水2025屆高考壓軸卷數(shù)學試卷含解析
- DB14-T2551-2022公路隧道缺陷與病害處治及驗收技術(shù)規(guī)范
- 文化產(chǎn)業(yè)示范基地創(chuàng)建驗收標準
- 醫(yī)學美容美學設計師培訓
- GB/T 44569.1-2024土工合成材料內(nèi)部節(jié)點強度的測定第1部分:土工格室
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》電子教案
評論
0/150
提交評論