




已閱讀5頁(yè),還剩254頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
.,數(shù)學(xué)模型,.,課程簡(jiǎn)介,.,第一章建立數(shù)學(xué)模型第二章初等模型第三章簡(jiǎn)單的優(yōu)化模型第四章數(shù)學(xué)規(guī)劃模型第五章微分方程模型第六章穩(wěn)定性模型第七章差分方程模型第八章離散模型第九章概率模型第十章統(tǒng)計(jì)回歸模型附錄:數(shù)學(xué)建模實(shí)驗(yàn),.,教學(xué)進(jìn)度,.,.,第一章建立數(shù)學(xué)模型,1.1從現(xiàn)實(shí)對(duì)象到數(shù)學(xué)模型1.2數(shù)學(xué)建模的重要意義1.3數(shù)學(xué)建模示例1.4數(shù)學(xué)建模的方法和步驟1.5數(shù)學(xué)模型的特點(diǎn)和分類1.6怎樣學(xué)習(xí)數(shù)學(xué)建模,.,玩具、照片、飛機(jī)、火箭模型,實(shí)物模型,水箱中的艦艇、風(fēng)洞中的飛機(jī),物理模型,地圖、電路圖、分子結(jié)構(gòu)圖,符號(hào)模型,模型是為了一定目的,對(duì)客觀事物的一部分進(jìn)行簡(jiǎn)縮、抽象、提煉出來(lái)的原型的替代物,模型集中反映了原型中人們需要的那一部分特征,1.1從現(xiàn)實(shí)對(duì)象到數(shù)學(xué)模型,我們常見(jiàn)的模型,.,你碰到過(guò)的數(shù)學(xué)模型“航行問(wèn)題”,用x表示船速,y表示水速,列出方程:,答:船速每小時(shí)20千米/小時(shí).,甲乙兩地相距750千米,船從甲到乙順?biāo)叫行?0小時(shí),從乙到甲逆水航行需50小時(shí),問(wèn)船的速度是多少?,x=20y=5,.,航行問(wèn)題建立數(shù)學(xué)模型的基本步驟,作出簡(jiǎn)化假設(shè)(船速、水速為常數(shù));,用符號(hào)表示有關(guān)量(x,y表示船速和水速);,用物理定律(勻速運(yùn)動(dòng)的距離等于速度乘以時(shí)間)列出數(shù)學(xué)式子(二元一次方程);,求解得到數(shù)學(xué)解答(x=20,y=5);,回答原問(wèn)題(船速每小時(shí)20千米/小時(shí))。,.,數(shù)學(xué)模型(MathematicalModel)和數(shù)學(xué)建模(MathematicalModeling),對(duì)于一個(gè)現(xiàn)實(shí)對(duì)象,為了一個(gè)特定目的,根據(jù)其內(nèi)在規(guī)律,作出必要的簡(jiǎn)化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu)。,建立數(shù)學(xué)模型的全過(guò)程(包括表述、求解、解釋、檢驗(yàn)等),數(shù)學(xué)模型,數(shù)學(xué)建模,.,1.2數(shù)學(xué)建模的重要意義,電子計(jì)算機(jī)的出現(xiàn)及飛速發(fā)展;,數(shù)學(xué)以空前的廣度和深度向一切領(lǐng)域滲透。,數(shù)學(xué)建模作為用數(shù)學(xué)方法解決實(shí)際問(wèn)題的第一步,越來(lái)越受到人們的重視。,在一般工程技術(shù)領(lǐng)域數(shù)學(xué)建模仍然大有用武之地;,在高新技術(shù)領(lǐng)域數(shù)學(xué)建模幾乎是必不可少的工具;,數(shù)學(xué)進(jìn)入一些新領(lǐng)域,為數(shù)學(xué)建模開辟了許多處女地。,.,數(shù)學(xué)建模的具體應(yīng)用,分析與設(shè)計(jì),預(yù)報(bào)與決策,控制與優(yōu)化,規(guī)劃與管理,數(shù)學(xué)建模,計(jì)算機(jī)技術(shù),知識(shí)經(jīng)濟(jì),.,1.3數(shù)學(xué)建模示例,1.3.1椅子能在不平的地面上放穩(wěn)嗎,問(wèn)題分析,模型假設(shè),通常三只腳著地,放穩(wěn)四只腳著地,四條腿一樣長(zhǎng),椅腳與地面點(diǎn)接觸,四腳連線呈正方形;,地面高度連續(xù)變化,可視為數(shù)學(xué)上的連續(xù)曲面;,地面相對(duì)平坦,使椅子在任意位置至少三只腳同時(shí)著地。,.,模型構(gòu)成,用數(shù)學(xué)語(yǔ)言把椅子位置和四只腳著地的關(guān)系表示出來(lái),椅子位置,利用正方形(椅腳連線)的對(duì)稱性,用(對(duì)角線與x軸的夾角)表示椅子位置,四只腳著地,距離是的函數(shù),四個(gè)距離(四只腳),A,C兩腳與地面距離之和f(),B,D兩腳與地面距離之和g(),兩個(gè)距離,椅腳與地面距離為零,正方形ABCD繞O點(diǎn)旋轉(zhuǎn),.,用數(shù)學(xué)語(yǔ)言把椅子位置和四只腳著地的關(guān)系表示出來(lái),f(),g()是連續(xù)函數(shù),對(duì)任意,f(),g()至少一個(gè)為0,數(shù)學(xué)問(wèn)題,已知:f(),g()是連續(xù)函數(shù);對(duì)任意,f()g()=0;且g(0)=0,f(0)0.證明:存在0,使f(0)=g(0)=0.,模型構(gòu)成,地面為連續(xù)曲面,椅子在任意位置至少三只腳著地,.,模型求解,給出一種簡(jiǎn)單、粗糙的證明方法,將椅子旋轉(zhuǎn)900,對(duì)角線AC和BD互換。由g(0)=0,f(0)0,知f(/2)=0,g(/2)0.令h()=f()g(),則h(0)0和h(/2)p2/n2,對(duì)不公平,A,p1/n1p2/n2=5,.,公平分配方案應(yīng)使rA,rB盡量小,設(shè)A,B已分別有n1,n2席,若增加1席,問(wèn)應(yīng)分給A,還是B,不妨設(shè)分配開始時(shí)p1/n1p2/n2,即對(duì)A不公平,對(duì)A的相對(duì)不公平度,將絕對(duì)度量改為相對(duì)度量,類似地定義rB(n1,n2),將一次性的席位分配轉(zhuǎn)化為動(dòng)態(tài)的席位分配,即,“公平”分配方法,若p1/n1p2/n2,定義,.,1)若p1/(n1+1)p2/n2,,則這席應(yīng)給A,2)若p1/(n1+1)p2/(n2+1),,應(yīng)計(jì)算rB(n1+1,n2),應(yīng)計(jì)算rA(n1,n2+1),若rB(n1+1,n2)p2/n2,問(wèn):,p1/n1rA(n1,n2+1),則這席應(yīng)給B,.,當(dāng)rB(n1+1,n2)640,g=0.1,.,敏感性分析,研究r,g變化時(shí)對(duì)模型結(jié)果的影響,設(shè)g=0.1不變,t對(duì)r的(相對(duì))敏感度,生豬每天體重增加量r增加1%,出售時(shí)間推遲3%。,.,敏感性分析,研究r,g變化時(shí)對(duì)模型結(jié)果的影響,設(shè)r=2不變,t對(duì)g的(相對(duì))敏感度,生豬價(jià)格每天的降低量g增加1%,出售時(shí)間提前3%。,.,強(qiáng)健性分析,保留生豬直到利潤(rùn)的增值等于每天的費(fèi)用時(shí)出售,由S(t,r)=3,建議過(guò)一周后(t=7)重新估計(jì),再作計(jì)算。,研究r,g不是常數(shù)時(shí)對(duì)模型結(jié)果的影響,w=80+rtw=w(t),p=8-gtp=p(t),若(10%),則(30%),.,3.3森林救火,森林失火后,要確定派出消防隊(duì)員的數(shù)量。隊(duì)員多,森林損失小,救援費(fèi)用大;隊(duì)員少,森林損失大,救援費(fèi)用小。綜合考慮損失費(fèi)和救援費(fèi),確定隊(duì)員數(shù)量。,問(wèn)題分析,問(wèn)題,記隊(duì)員人數(shù)x,失火時(shí)刻t=0,開始救火時(shí)刻t1,滅火時(shí)刻t2,時(shí)刻t森林燒毀面積B(t).,損失費(fèi)f1(x)是x的減函數(shù),由燒毀面積B(t2)決定.,救援費(fèi)f2(x)是x的增函數(shù),由隊(duì)員人數(shù)和救火時(shí)間決定.,存在恰當(dāng)?shù)膞,使f1(x),f2(x)之和最小,.,關(guān)鍵是對(duì)B(t)作出合理的簡(jiǎn)化假設(shè).,問(wèn)題分析,失火時(shí)刻t=0,開始救火時(shí)刻t1,滅火時(shí)刻t2,畫出時(shí)刻t森林燒毀面積B(t)的大致圖形,分析B(t)比較困難,轉(zhuǎn)而討論森林燒毀速度dB/dt.,.,模型假設(shè),3)f1(x)與B(t2)成正比,系數(shù)c1(燒毀單位面積損失費(fèi)),1)0tt1,dB/dt與t成正比,系數(shù)(火勢(shì)蔓延速度),2)t1tt2,降為-x(為隊(duì)員的平均滅火速度),4)每個(gè)隊(duì)員的單位時(shí)間滅火費(fèi)用c2,一次性費(fèi)用c3,假設(shè)1)的解釋,火勢(shì)以失火點(diǎn)為中心,均勻向四周呈圓形蔓延,半徑r與t成正比,.,模型建立,目標(biāo)函數(shù)總費(fèi)用,.,模型建立,目標(biāo)函數(shù)總費(fèi)用,模型求解,求x使C(x)最小,結(jié)果解釋,/是火勢(shì)不繼續(xù)蔓延的最少隊(duì)員數(shù),其中c1,c2,c3,t1,為已知參數(shù),.,模型應(yīng)用,c1,c2,c3已知,t1可估計(jì),c2x,c1,t1,x,c3,x,結(jié)果解釋,c1燒毀單位面積損失費(fèi),c2每個(gè)隊(duì)員單位時(shí)間滅火費(fèi),c3每個(gè)隊(duì)員一次性費(fèi)用,t1開始救火時(shí)刻,火勢(shì)蔓延速度,每個(gè)隊(duì)員平均滅火速度.,為什么?,可設(shè)置一系列數(shù)值,由模型決定隊(duì)員數(shù)量x,.,3.4最優(yōu)價(jià)格,問(wèn)題,根據(jù)產(chǎn)品成本和市場(chǎng)需求,在產(chǎn)銷平衡條件下確定商品價(jià)格,使利潤(rùn)最大,假設(shè),1)產(chǎn)量等于銷量,記作x,2)收入與銷量x成正比,系數(shù)p即價(jià)格,3)支出與產(chǎn)量x成正比,系數(shù)q即成本,4)銷量x依賴于價(jià)格p,x(p)是減函數(shù),建模與求解,收入,支出,利潤(rùn),進(jìn)一步設(shè),求p使U(p)最大,.,使利潤(rùn)U(p)最大的最優(yōu)價(jià)格p*滿足,最大利潤(rùn)在邊際收入等于邊際支出時(shí)達(dá)到,建模與求解,.,結(jié)果解釋,q/2成本的一半,b價(jià)格上升1單位時(shí)銷量的下降幅度(需求對(duì)價(jià)格的敏感度),a絕對(duì)需求(p很小時(shí)的需求),bp*,ap*,思考:如何得到參數(shù)a,b?,.,3.6消費(fèi)者均衡,問(wèn)題,消費(fèi)者對(duì)甲乙兩種商品的偏愛(ài)程度用無(wú)差別曲線族表示,問(wèn)他如何分配一定數(shù)量的錢,購(gòu)買這兩種商品,以達(dá)到最大的滿意度。,設(shè)甲乙數(shù)量為q1,q2,消費(fèi)者的無(wú)差別曲線族(單調(diào)減、下凸、不相交),記作U(q1,q2)=c,U(q1,q2)效用函數(shù),已知甲乙價(jià)格p1,p2,有錢s,試分配s,購(gòu)買甲乙數(shù)量q1,q2,使U(q1,q2)最大.,.,模型及求解,已知價(jià)格p1,p2,錢s,求q1,q2,或p1q1/p2q2,使U(q1,q2)最大,幾何解釋,直線MN:,最優(yōu)解Q:MN與l2切點(diǎn),斜率,.,結(jié)果解釋,邊際效用,消費(fèi)者均衡狀態(tài)在兩種商品的邊際效用之比恰等于它們價(jià)格之比時(shí)達(dá)到。,效用函數(shù)U(q1,q2)應(yīng)滿足的條件,A.U(q1,q2)=c所確定的函數(shù)q2=q2(q1)單調(diào)減、下凸,解釋B的實(shí)際意義,.,效用函數(shù)U(q1,q2)幾種常用的形式,消費(fèi)者均衡狀態(tài)下購(gòu)買兩種商品費(fèi)用之比與二者價(jià)格之比的平方根成正比。,U(q1,q2)中參數(shù),分別表示消費(fèi)者對(duì)甲乙兩種商品的偏愛(ài)程度。,.,購(gòu)買兩種商品費(fèi)用之比與二者價(jià)格無(wú)關(guān)。,U(q1,q2)中參數(shù),分別表示對(duì)甲乙的偏愛(ài)程度。,思考:如何推廣到m(2)種商品的情況,效用函數(shù)U(q1,q2)幾種常用的形式,.,第四章數(shù)學(xué)規(guī)劃模型,4.3汽車生產(chǎn)與原油采購(gòu)4.5飲料廠的生產(chǎn)與檢修,.,數(shù)學(xué)規(guī)劃模型,實(shí)際問(wèn)題中的優(yōu)化模型,x決策變量,f(x)目標(biāo)函數(shù),gi(x)0約束條件,多元函數(shù)條件極值,決策變量個(gè)數(shù)n和約束條件個(gè)數(shù)m較大,最優(yōu)解在可行域的邊界上取得,數(shù)學(xué)規(guī)劃,線性規(guī)劃非線性規(guī)劃整數(shù)規(guī)劃,重點(diǎn)在模型的建立和結(jié)果的分析,.,如果生產(chǎn)某一類型汽車,則至少要生產(chǎn)80輛,那么最優(yōu)的生產(chǎn)計(jì)劃應(yīng)作何改變?,例1汽車廠生產(chǎn)計(jì)劃,汽車廠生產(chǎn)三種類型的汽車,已知各類型每輛車對(duì)鋼材、勞動(dòng)時(shí)間的需求,利潤(rùn)及工廠每月的現(xiàn)有量。,制訂月生產(chǎn)計(jì)劃,使工廠的利潤(rùn)最大。,4.3汽車生產(chǎn)與原油采購(gòu),.,設(shè)每月生產(chǎn)小、中、大型汽車的數(shù)量分別為x1,x2,x3,汽車廠生產(chǎn)計(jì)劃,模型建立,線性規(guī)劃模型(LP),.,模型求解,3)模型中增加條件:x1,x2,x3均為整數(shù),重新求解。,OBJECTIVEFUNCTIONVALUE1)632.2581VARIABLEVALUEREDUCEDCOSTX164.5161290.000000X2167.7419280.000000X30.0000000.946237ROWSLACKORSURPLUSDUALPRICES2)0.0000000.7311833)0.0000000.003226,結(jié)果為小數(shù),怎么辦?,1)舍去小數(shù):取x1=64,x2=167,算出目標(biāo)函數(shù)值z(mì)=629,與LP最優(yōu)值632.2581相差不大。,2)試探:如取x1=65,x2=167;x1=64,x2=168等,計(jì)算函數(shù)值z(mì),通過(guò)比較可能得到更優(yōu)的解。,但必須檢驗(yàn)它們是否滿足約束條件。為什么?,.,IP可用LINDO直接求解,整數(shù)規(guī)劃(IntegerProgramming,簡(jiǎn)記IP),“gin3”表示“前3個(gè)變量為整數(shù)”,等價(jià)于:ginx1ginx2ginx3,IP的最優(yōu)解x1=64,x2=168,x3=0,最優(yōu)值z(mì)=632,max2x1+3x2+4x3st1.5x1+3x2+5x30;x120;x210;x220;x10;x20;x30;end,Objectivevalue:4800.000VariableValueReducedCostX11500.00000.0000000E+00X21500.00000.0000000E+00X120.0000000E+000.0000000E+00X220.0000000E+000.0000000E+00X10.1021405E-1310.00000X20.0000000E+008.000000X30.0000000E+006.000000X0.0000000E+000.0000000E+00,LINGO得到的是局部最優(yōu)解,還能得到更好的解嗎?,用庫(kù)存的500噸原油A、500噸原油B生產(chǎn)汽油甲,不購(gòu)買新的原油A,利潤(rùn)為4,800千元。,.,y1,y2,y3=1以價(jià)格10,8,6(千元/噸)采購(gòu)A,增加約束,方法2,0-1線性規(guī)劃模型,可用LINDO求解,y1,y2,y3=0或1,OBJECTIVEFUNCTIONVALUE1)5000.000VARIABLEVALUEREDUCEDCOSTY11.0000000.000000Y21.0000002200.000000Y31.0000001200.000000X110.0000000.800000X210.0000000.800000X121500.0000000.000000X221000.0000000.000000X1500.0000000.000000X2500.0000000.000000X30.0000000.400000X1000.0000000.000000,購(gòu)買1000噸原油A,與庫(kù)存的500噸原油A和1000噸原油B一起,生產(chǎn)汽油乙,利潤(rùn)為5,000千元。,x1,x2,x3以價(jià)格10,8,6(千元/噸)采購(gòu)A的噸數(shù),優(yōu)于方法1的結(jié)果,.,b1b2b3b4,方法3,b1xb2,x=z1b1+z2b2,z1+z2=1,z1,z20,c(x)=z1c(b1)+z2c(b2).,b2xb3,x=z2b2+z3b3,z2+z3=1,z2,z30,c(x)=z2c(b2)+z3c(b3).,b3xb4,x=z3b3+z4b4,z3+z4=1,z3,z40,c(x)=z3c(b3)+z4c(b4).,直接處理處理分段線性函數(shù)c(x),.,IP模型,LINDO求解,得到的結(jié)果與方法2相同.,處理分段線性函數(shù),方法3更具一般性,bkxbk+1yk=1,否則,yk=0,方法3,bkxbk+1,x=zkbk+zk+1bk+1zk+zk+1=1,zk,zk+10,c(x)=zkc(bk)+zk+1c(bk+1).,對(duì)于k=1,2,3,.,4.5飲料廠的生產(chǎn)與檢修,單階段生產(chǎn)計(jì)劃,多階段生產(chǎn)計(jì)劃,生產(chǎn)批量問(wèn)題,企業(yè)生產(chǎn)計(jì)劃,考慮與產(chǎn)量無(wú)關(guān)的固定費(fèi)用,給優(yōu)化模型求解帶來(lái)新的困難,.,安排生產(chǎn)計(jì)劃,滿足每周的需求,使4周總費(fèi)用最小。,存貯費(fèi):每周每千箱飲料0.2千元。,例1飲料廠的生產(chǎn)與檢修計(jì)劃,在4周內(nèi)安排一次設(shè)備檢修,占用當(dāng)周15千箱生產(chǎn)能力,能使檢修后每周增產(chǎn)5千箱,檢修應(yīng)排在哪一周?,某種飲料4周的需求量、生產(chǎn)能力和成本,.,問(wèn)題分析,除第4周外每周的生產(chǎn)能力超過(guò)每周的需求;生產(chǎn)成本逐周上升;前幾周應(yīng)多生產(chǎn)一些。,飲料廠在第1周開始時(shí)沒(méi)有庫(kù)存;從費(fèi)用最小考慮,第4周末不能有庫(kù)存;周末有庫(kù)存時(shí)需支出一周的存貯費(fèi);每周末的庫(kù)存量等于下周初的庫(kù)存量。,模型假設(shè),.,目標(biāo)函數(shù),約束條件,產(chǎn)量、庫(kù)存與需求平衡,決策變量,能力限制,非負(fù)限制,模型建立,x1x4:第14周的生產(chǎn)量,y1y3:第13周末庫(kù)存量,存貯費(fèi):0.2(千元/周千箱),.,模型求解,4周生產(chǎn)計(jì)劃的總費(fèi)用為528(千元),最優(yōu)解:x1x4:15,40,25,20;y1y3:0,15,5.,LINDO求解,.,檢修計(jì)劃,0-1變量wt:wt=1檢修安排在第t周(t=1,2,3,4),在4周內(nèi)安排一次設(shè)備檢修,占用當(dāng)周15千箱生產(chǎn)能力,能使檢修后每周增產(chǎn)5千箱,檢修應(yīng)排在哪一周?,檢修安排在任一周均可,約束條件,能力限制,產(chǎn)量、庫(kù)存與需求平衡條件不變,.,增加約束條件:檢修1次,檢修計(jì)劃,目標(biāo)函數(shù)不變,0-1變量wt:wt=1檢修安排在第t周(t=1,2,3,4),LINDO求解,總費(fèi)用由528千元降為527千元,檢修所導(dǎo)致的生產(chǎn)能力提高的作用,需要更長(zhǎng)的時(shí)間才能得到充分體現(xiàn)。,最優(yōu)解:w1=1,w2,w3,w4=0;x1x4:15,45,15,25;y1y3:0,20,0.,.,例2飲料的生產(chǎn)批量問(wèn)題,安排生產(chǎn)計(jì)劃,滿足每周的需求,使4周總費(fèi)用最小。,存貯費(fèi):每周每千箱飲料0.2千元。,飲料廠使用同一條生產(chǎn)線輪流生產(chǎn)多種飲料。若某周開工生產(chǎn)某種飲料,需支出生產(chǎn)準(zhǔn)備費(fèi)8千元。,某種飲料4周的需求量、生產(chǎn)能力和成本,.,混合0-1規(guī)劃模型,最優(yōu)解:x1x4:15,40,45,0;總費(fèi)用:554.0(千元),生產(chǎn)批量問(wèn)題的一般提法,將所給參數(shù)代入模型,用LINDO求解,.,第五章微分方程模型,5.1傳染病模型5.2經(jīng)濟(jì)增長(zhǎng)模型5.6人口預(yù)測(cè)和控制,.,動(dòng)態(tài)模型,描述對(duì)象特征隨時(shí)間(空間)的演變過(guò)程,分析對(duì)象特征的變化規(guī)律,預(yù)報(bào)對(duì)象特征的未來(lái)性態(tài),研究控制對(duì)象特征的手段,根據(jù)函數(shù)及其變化率之間的關(guān)系確定函數(shù),微分方程建模,根據(jù)建模目的和問(wèn)題分析作出簡(jiǎn)化假設(shè),按照內(nèi)在規(guī)律或用類比法建立微分方程,.,5.1傳染病模型,問(wèn)題,描述傳染病的傳播過(guò)程,分析受感染人數(shù)的變化規(guī)律,預(yù)報(bào)傳染病高潮到來(lái)的時(shí)刻,預(yù)防傳染病蔓延的手段,按照傳播過(guò)程的一般規(guī)律,用機(jī)理分析方法建立模型,.,已感染人數(shù)(病人)i(t),每個(gè)病人每天有效接觸(足以使人致病)人數(shù)為,模型1,假設(shè),若有效接觸的是病人,則不能使病人數(shù)增加,建模,?,.,模型2,區(qū)分已感染者(病人)和未感染者(健康人),假設(shè),1)總?cè)藬?shù)N不變,病人和健康人的比例分別為,2)每個(gè)病人每天有效接觸人數(shù)為,且使接觸的健康人致病,建模,日接觸率,SI模型,.,模型2,tm傳染病高潮到來(lái)時(shí)刻,(日接觸率)tm,病人可以治愈!,?,t=tm,di/dt最大,.,模型3,傳染病無(wú)免疫性病人治愈成為健康人,健康人可再次被感染,增加假設(shè),SIS模型,3)病人每天治愈的比例為,日治愈率,建模,日接觸率,1/感染期,一個(gè)感染期內(nèi)每個(gè)病人的有效接觸人數(shù),稱為接觸數(shù)。,.,模型3,接觸數(shù)=1閾值,感染期內(nèi)有效接觸感染的健康者人數(shù)不超過(guò)病人數(shù),模型2(SI模型)如何看作模型3(SIS模型)的特例,.,模型4,傳染病有免疫性病人治愈后即移出感染系統(tǒng),稱移出者,SIR模型,假設(shè),1)總?cè)藬?shù)N不變,病人、健康人和移出者的比例分別為,2)病人的日接觸率,日治愈率,接觸數(shù)=/,建模,需建立的兩個(gè)方程,.,模型4,SIR模型,.,模型4,SIR模型,相軌線的定義域,在D內(nèi)作相軌線的圖形,進(jìn)行分析,.,模型4,SIR模型,相軌線及其分析,s(t)單調(diào)減相軌線的方向,P1:s01/i(t)先升后降至0,P2:s01/i(t)單調(diào)降至0,1/閾值,.,模型4,SIR模型,預(yù)防傳染病蔓延的手段,(日接觸率)衛(wèi)生水平,(日治愈率)醫(yī)療水平,傳染病不蔓延的條件s00,R(E)=0時(shí)的捕撈強(qiáng)度(臨界強(qiáng)度)Es=2ER,臨界強(qiáng)度下的漁場(chǎng)魚量,捕撈過(guò)度,令=0,.,6.2軍備競(jìng)賽,描述雙方(國(guó)家或國(guó)家集團(tuán))軍備競(jìng)賽過(guò)程,解釋(預(yù)測(cè))雙方軍備競(jìng)賽的結(jié)局,假設(shè),1)由于相互不信任,一方軍備越大,另一方軍備增加越快;,2)由于經(jīng)濟(jì)實(shí)力限制,一方軍備越大,對(duì)自己軍備增長(zhǎng)的制約越大;,3)由于相互敵視或領(lǐng)土爭(zhēng)端,每一方都存在增加軍備的潛力。,進(jìn)一步假設(shè),1)2)的作用為線性;3)的作用為常數(shù),目的,.,建模,軍備競(jìng)賽的結(jié)局,x(t)甲方軍備數(shù)量,y(t)乙方軍備數(shù)量,本方經(jīng)濟(jì)實(shí)力的制約;k,l對(duì)方軍備數(shù)量的刺激;g,h本方軍備競(jìng)賽的潛力。,.,記系數(shù)矩陣,特征方程,特征根,.,特征根,平衡點(diǎn)P0(0,0),微分方程一般解形式,1,2為負(fù)數(shù)或有負(fù)實(shí)部,p0或qkl下x(t),y(t)0,即友好鄰國(guó)通過(guò)裁軍可達(dá)到永久和平。,模型,本方經(jīng)濟(jì)實(shí)力的制約;k,l對(duì)方軍備數(shù)量的刺激;g,h本方軍備競(jìng)賽的潛力。,.,3)若g,h不為零,即便雙方一時(shí)和解,使某時(shí)x(t),y(t)很小,但因,也會(huì)重整軍備。,4)即使某時(shí)一方(由于戰(zhàn)敗或協(xié)議)軍備大減,如x(t)=0,也會(huì)因使該方重整軍備,,即存在互不信任()或固有爭(zhēng)端()的單方面裁軍不會(huì)持久。,模型的定性解釋,本方經(jīng)濟(jì)實(shí)力的制約;k,l對(duì)方軍備數(shù)量的刺激;g,h本方軍備競(jìng)賽的潛力。,模型,.,6.4種群的相互依存,甲乙兩種群的相互依存有三種形式,1)甲可以獨(dú)自生存,乙不能獨(dú)自生存;甲乙一起生存時(shí)相互提供食物、促進(jìn)增長(zhǎng)。,2)甲乙均可以獨(dú)自生存;甲乙一起生存時(shí)相互提供食物、促進(jìn)增長(zhǎng)。,3)甲乙均不能獨(dú)自生存;甲乙一起生存時(shí)相互提供食物、促進(jìn)增長(zhǎng)。,.,模型假設(shè),甲可以獨(dú)自生存,數(shù)量變化服從Logistic規(guī)律;甲乙一起生存時(shí)乙為甲提供食物、促進(jìn)增長(zhǎng)。,乙不能獨(dú)自生存;甲乙一起生存時(shí)甲為乙提供食物、促進(jìn)增長(zhǎng);乙的增長(zhǎng)又受到本身的阻滯作用(服從Logistic規(guī)律)。,模型,乙為甲提供食物是甲消耗的1倍,甲為乙提供食物是乙消耗的2倍,.,種群依存模型的平衡點(diǎn)及穩(wěn)定性,P2是甲乙相互依存而共生的平衡點(diǎn),.,平衡點(diǎn)P2穩(wěn)定性的相軌線,11,121甲必須為乙提供足夠的食物甲為乙提供的食物是乙消耗的2倍,11,121條件下使121成立,P2穩(wěn)定條件:11,1230肥胖.,.,模型假設(shè),1)體重增加正比于吸收的熱量每8000千卡增加體重1千克;,2)代謝引起的體重減少正比于體重每周每公斤體重消耗200千卡320千卡(因人而異),相當(dāng)于70千克的人每天消耗2000千卡3200千卡;,3)運(yùn)動(dòng)引起的體重減少正比于體重,且與運(yùn)動(dòng)形式有關(guān);,4)為了安全與健康,每周體重減少不宜超過(guò)1.5千克,每周吸收熱量不要小于10000千卡。,.,某甲體重100千克,目前每周吸收20000千卡熱量,體重維持不變?,F(xiàn)欲減肥至75千克。,第一階段:每周減肥1千克,每周吸收熱量逐漸減少,直至達(dá)到下限(10000千卡);,第二階段:每周吸收熱量保持下限,減肥達(dá)到目標(biāo),2)若要加快進(jìn)程,第二階段增加運(yùn)動(dòng),試安排計(jì)劃。,1)在不運(yùn)動(dòng)的情況下安排一個(gè)兩階段計(jì)劃。,減肥計(jì)劃,3)給出達(dá)到目標(biāo)后維持體重的方案。,.,確定某甲的代謝消耗系數(shù),即每周每千克體重消耗20000/100=200千卡,基本模型,w(k)第k周(末)體重,c(k)第k周吸收熱量,代謝消耗系數(shù)(因人而異),1)不運(yùn)動(dòng)情況的兩階段減肥計(jì)劃,每周吸收20000千卡w=100千克不變,.,第一階段:w(k)每周減1千克,c(k)減至下限10000千卡,第一階段10周,每周減1千克,第10周末體重90千克,吸收熱量為,1)不運(yùn)動(dòng)情況的兩階段減肥計(jì)劃,.,第二階段:每周c(k)保持Cm,w(k)減至75千克,1)不運(yùn)動(dòng)情況的兩階段減肥計(jì)劃,基本模型,.,第二階段:每周c(k)保持Cm,w(k)減至75千克,第二階段19周,每周吸收熱量保持10000千卡,體重按減少至75千克。,.,運(yùn)動(dòng)t=24(每周跳舞8小時(shí)或自行車10小時(shí)),14周即可。,2)第二階段增加運(yùn)動(dòng)的減肥計(jì)劃,t每周運(yùn)動(dòng)時(shí)間(小時(shí)),.,3)達(dá)到目標(biāo)體重75千克后維持不變的方案,每周吸收熱量c(k)保持某常數(shù)C,使體重w不變,不運(yùn)動(dòng),運(yùn)動(dòng)(內(nèi)容同前),.,第八章離散模型,8.1層次分析模型8.4效益的合理分配,y,.,離散模型,離散模型:差分方程(第7章)、整數(shù)規(guī)劃(第4章)、圖論、對(duì)策論、網(wǎng)絡(luò)流、,分析社會(huì)經(jīng)濟(jì)系統(tǒng)的有力工具,只用到代數(shù)、集合及圖論(少許)的知識(shí),.,8.1層次分析模型,背景,日常工作、生活中的決策問(wèn)題,涉及經(jīng)濟(jì)、社會(huì)等方面的因素,作比較判斷時(shí)人的主觀選擇起相當(dāng)大的作用,各因素的重要性難以量化,Saaty于1970年代提出層次分析法AHP(AnalyticHierarchyProcess),AHP一種定性與定量相結(jié)合的、系統(tǒng)化、層次化的分析方法,.,目標(biāo)層,O(選擇旅游地),準(zhǔn)則層,方案層,一.層次分析法的基本步驟,例.選擇旅游地,如何在3個(gè)目的地中按照景色、費(fèi)用、居住條件等因素選擇.,.,“選擇旅游地”思維過(guò)程的歸納,將決策問(wèn)題分為3個(gè)層次:目標(biāo)層O,準(zhǔn)則層C,方案層P;每層有若干元素,各層元素間的關(guān)系用相連的直線表示。,通過(guò)相互比較確定各準(zhǔn)則對(duì)目標(biāo)的權(quán)重,及各方案對(duì)每一準(zhǔn)則的權(quán)重。,將上述兩組權(quán)重進(jìn)行綜合,確定各方案對(duì)目標(biāo)的權(quán)重。,層次分析法將定性分析與定量分析結(jié)合起來(lái)完成以上步驟,給出決策問(wèn)題的定量結(jié)果。,.,層次分析法的基本步驟,成對(duì)比較陣和權(quán)向量,元素之間兩兩對(duì)比,對(duì)比采用相對(duì)尺度,設(shè)要比較各準(zhǔn)則C1,C2,Cn對(duì)目標(biāo)O的重要性,A成對(duì)比較陣,A是正互反陣,要由A確定C1,Cn對(duì)O的權(quán)向量,選擇旅游地,.,成對(duì)比較的不一致情況,允許不一致,但要確定不一致的允許范圍,考察完全一致的情況,成對(duì)比較陣和權(quán)向量,.,成對(duì)比較完全一致的情況,A的秩為1,A的唯一非零特征根為n,A的任一列向量是對(duì)應(yīng)于n的特征向量,A的歸一化特征向量可作為權(quán)向量,對(duì)于不一致(但在允許范圍內(nèi))的成對(duì)比較陣A,建議用對(duì)應(yīng)于最大特征根的特征向量作為權(quán)向量w,即,一致陣性質(zhì),成對(duì)比較陣和權(quán)向量,.,2468,比較尺度aij,Saaty等人提出19尺度aij取值1,2,9及其互反數(shù)1,1/2,1/9,心理學(xué)家認(rèn)為成對(duì)比較的因素不宜超過(guò)9個(gè),用13,15,117,1p9p(p=2,3,4,5),d+0.1d+0.9(d=1,2,3,4)等27種比較尺度對(duì)若干實(shí)例構(gòu)造成對(duì)比較陣,算出權(quán)向量,與實(shí)際對(duì)比發(fā)現(xiàn),19尺度較優(yōu)。,便于定性到定量的轉(zhuǎn)化:,成對(duì)比較陣和權(quán)向量,.,一致性檢驗(yàn),對(duì)A確定不一致的允許范圍,已知:n階一致陣的唯一非零特征根為n,可證:n階正互反陣最大特征根n,且=n時(shí)為一致陣,定義一致性指標(biāo):,CI越大,不一致越嚴(yán)重,為衡量CI的大小,引入隨機(jī)一致性指標(biāo)RI隨機(jī)模擬得到aij,形成A,計(jì)算CI即得RI。,定義一致性比率CR=CI/RI,當(dāng)CRc(退回價(jià)),售出一份賺a-b;退回一份賠b-c,每天購(gòu)進(jìn)多少份可使收入最大?,分析,購(gòu)進(jìn)太多賣不完退回賠錢,購(gòu)進(jìn)太少不夠銷售賺錢少,應(yīng)根據(jù)需求確定購(gòu)進(jìn)量,每天需求量是隨機(jī)的,優(yōu)化問(wèn)題的目標(biāo)函數(shù)應(yīng)是長(zhǎng)期的日平均收入,等于每天收入的期望,.,建模,設(shè)每天購(gòu)進(jìn)n份,日平均收入為G(n),調(diào)查需求量的隨機(jī)規(guī)律每天需求量為r的概率f(r),r=0,1,2,準(zhǔn)備,求n使G(n)最大,已知售出一份賺a-b;退回一份賠b-c,.,求解,將r視為連續(xù)變量,.,結(jié)果解釋,取n使,a-b售出一份賺的錢b-c退回一份賠的錢,.,9.3隨機(jī)存貯策略,問(wèn)題,以周為時(shí)間單位;一周的商品銷售量為隨機(jī);周末根據(jù)庫(kù)存決定是否訂貨,供下周銷售。,(s,S)存貯策略制訂下界s,上界S,當(dāng)周末庫(kù)存小于s時(shí)訂貨,使下周初的庫(kù)存達(dá)到S;否則,不訂貨。,考慮訂貨費(fèi)、存貯費(fèi)、缺貨費(fèi)、購(gòu)進(jìn)費(fèi),制訂(s,S)存貯策略,使(平均意義下)總費(fèi)用最小,.,模型假設(shè),每次訂貨費(fèi)c0,每件商品購(gòu)進(jìn)價(jià)c1,每件商品一周貯存費(fèi)c2,每件商品缺貨損失費(fèi)c3(c1c3),每周銷售量r隨機(jī)、連續(xù),概率密度p(r),周末庫(kù)存量x,訂貨量u,周初庫(kù)存量x+u,每周貯存量按x+u-r計(jì),.,建模與求解,(s,S)存貯策略,確定(s,S),使目標(biāo)函數(shù)每周總費(fèi)用的平均值最小,平均費(fèi)用,訂貨費(fèi)c0,購(gòu)進(jìn)價(jià)c1,貯存費(fèi)c2,缺貨費(fèi)c3,銷售量r,s訂貨點(diǎn),S訂貨值,.,建模與求解,1)設(shè)xs,求u使J(u)最小,確定S,建模與求解,.,2)對(duì)庫(kù)存x,確定訂貨點(diǎn)s,若訂貨u,u+x=S,總費(fèi)用為,若不訂貨,u=0,總費(fèi)用為,建模與求解,.,最小正根的圖解法,J(u)在u+x=S處達(dá)到最小,I(x)在x=S處達(dá)到最小值I(S),I(x)圖形,建模與求解,.,9.5隨機(jī)人口模型,背景,一個(gè)人的出生和死亡是隨機(jī)事件,一個(gè)國(guó)家或地區(qū),平均生育率平均死亡率,確定性模型,一個(gè)家族或村落,出生概率死亡概率,隨機(jī)性模型,對(duì)象,X(t)時(shí)刻t的人口,隨機(jī)變量.,Pn(t)概率P(X(t)=n),n=0,1,2,研究Pn(t)的變化規(guī)律;得到X(t)的期望和方差,.,若X(t)=n,對(duì)t到t+t的出生和死亡概率作以下假設(shè),1)出生一人的概率與t成正比,記bnt;出生二人及二人以上的概率為o(t).,2)死亡一人的概率與t成正比,記dnt;死亡二人及二人以上的概率為o(t).,3)出生和死亡是相互獨(dú)立的隨機(jī)事件。,bn與n成正比,記bn=n,出生概率;dn與n成正比,記dn=n,死亡概率。,進(jìn)一步假設(shè),模型假設(shè),.,建模,為得到Pn(t)P(X(t)=n),的變化規(guī)律,考察Pn(t+t)=P(X(t+t)=n).,事件X(t+t)=n的分解,X(t)=n-1,t內(nèi)出生一人,X(t)=n+1,t內(nèi)死亡一人,X(t)=n,t內(nèi)沒(méi)有出生和死亡,其它(出生或死亡二人,出生且死亡一人,),概率Pn(t+t),Pn-1(t),bn-1t,Pn+1(t),dn+1t,Pn(t),1-bnt-dnt,o(t),.,一組遞推微分方程求解的困難和不必要,(t=0時(shí)已知人口為n0),轉(zhuǎn)而考察X(t)的期望和方差,微分方程,建模,.,X(t)的期望,求解,基本方程,.,求解,比較:確定性指數(shù)增長(zhǎng)模型,X(t)的方差,-=rD(t),D(t),X(t)大致在E(t)2(t)范圍內(nèi)((t)均方差),r增長(zhǎng)概率,r平均增長(zhǎng)率,.,第十章統(tǒng)計(jì)回歸模型,10.1牙膏的銷售量,.,回歸模型是用統(tǒng)計(jì)分析方法建立的最常用的一類模型,數(shù)學(xué)建模的基本方法,機(jī)理分析,測(cè)試分析,通過(guò)對(duì)數(shù)據(jù)的統(tǒng)計(jì)分析,找出與數(shù)據(jù)擬合最好的模型,不涉及回歸分析的數(shù)學(xué)原理和方法,通過(guò)實(shí)例討論如何選擇不同類型的模型,對(duì)軟件得到的結(jié)果進(jìn)行分析,對(duì)模型進(jìn)行改進(jìn),由于客觀事物內(nèi)部規(guī)律的復(fù)雜及人們認(rèn)識(shí)程度的限制,無(wú)法分析實(shí)際對(duì)象內(nèi)在的因果關(guān)系,建立合乎機(jī)理規(guī)律的數(shù)學(xué)模型。,.,10.1牙膏的銷售量,問(wèn)題,建立牙膏銷售量與價(jià)格、廣告投入之間的模型,預(yù)測(cè)在不同價(jià)格和廣告費(fèi)用下的牙膏銷售量,收集了30個(gè)銷售周期本公司牙膏銷售量、價(jià)格、廣告費(fèi)用,及同期其它廠家同類牙膏的平均售價(jià),.,基本模型,y公司牙膏銷售量,x1其它廠家與本公司價(jià)格差,x2公司廣告費(fèi)用,x1,x2解釋變量(回歸變量,自變量),y被解釋變量(因變量),0,1,2,3回歸系數(shù),隨機(jī)誤差(均值為零的正態(tài)分布隨機(jī)變量),.,MATLAB統(tǒng)計(jì)工具箱,模型求解,b,bint,r,rint,stats=regress(y,x,alpha),輸入,x=n4數(shù)據(jù)矩陣,第1列為全1向量,alpha(置信水平,0.05),b的估計(jì)值,bintb的置信區(qū)間,r殘差向量y-xb,rintr的置信區(qū)間,Stats檢驗(yàn)統(tǒng)計(jì)量R2,F,p,yn維數(shù)據(jù)向量,輸出,由數(shù)據(jù)y,x1,x2估計(jì),.,結(jié)果分析,y的90.54%可由模型確定,F遠(yuǎn)超過(guò)F檢驗(yàn)的臨界值,p遠(yuǎn)小于=0.05,2的置信區(qū)間包含零點(diǎn)(右端點(diǎn)距零點(diǎn)很近),x2對(duì)因變量y的影響不太顯著,x22項(xiàng)顯著,可將x2保留在模型中,模型從整體上看成立,.,銷售量預(yù)測(cè),價(jià)格差x1=其它廠家價(jià)格x3-本公司價(jià)格x4,估計(jì)x3,調(diào)整x4,控制價(jià)格差x1=0.2元,投入廣告費(fèi)x2=650萬(wàn)元,銷售量預(yù)測(cè)區(qū)間為7.8230,8.7636(置信度95%),上限用作庫(kù)存管理的目標(biāo)值,下限用來(lái)把握公司的現(xiàn)金流,若估計(jì)x3=3.9,設(shè)定x4=3.7,則可以95%的把握知道銷售額在7.83203.729(百萬(wàn)元)以上,(百萬(wàn)支),.,模型改進(jìn),x1和x2對(duì)y的影響?yīng)毩?.,兩模型銷售量預(yù)測(cè)比較,(百萬(wàn)支),區(qū)間7.8230,8.7636,區(qū)間7
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓(xùn)班動(dòng)員講話稿
- 企業(yè)中層管理者高效溝通與協(xié)調(diào)技巧課件
- 《生態(tài)系統(tǒng)與生物循環(huán)》課件
- 網(wǎng)絡(luò)安全管理員初級(jí)工練習(xí)題庫(kù)與答案(附解析)
- 貨幣金融學(xué)模擬題及答案(附解析)
- 2024年4月護(hù)理三基三嚴(yán)習(xí)題庫(kù)(附答案解析)
- 箱包綠色環(huán)保與可持續(xù)發(fā)展考核試卷
- 融資租賃業(yè)務(wù)中的國(guó)際法律合規(guī)考核試卷
- 《生產(chǎn)流程管理與控制》課件
- 谷物磨制設(shè)備故障分析與預(yù)防措施考核試卷
- 《進(jìn)一步規(guī)范管理燃煤自備電廠工作方案》發(fā)改體改〔2021〕1624號(hào)
- SQL語(yǔ)句創(chuàng)建學(xué)生信息數(shù)據(jù)庫(kù)表的示例學(xué)生信息數(shù)據(jù)庫(kù)表
- 輿情風(fēng)險(xiǎn)應(yīng)對(duì)處置
- 2024河南中考數(shù)學(xué)備考 二次函數(shù)圖象與性質(zhì)綜合題、交點(diǎn)問(wèn)題 (課件)
- 快速入門穿越機(jī)-讓你迅速懂穿越機(jī)
- 數(shù)字電子技術(shù)(廣東工業(yè)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年廣東工業(yè)大學(xué)
- 人工智能對(duì)書法技法的革新
- 2024年四川省成都市高新區(qū)中考數(shù)學(xué)二診試卷
- MOOC 知識(shí)創(chuàng)新與學(xué)術(shù)規(guī)范-南京大學(xué) 中國(guó)大學(xué)慕課答案
- 2024年濟(jì)南市槐蔭區(qū)二模英語(yǔ)試題
- 中外美術(shù)評(píng)析與欣賞智慧樹知到期末考試答案章節(jié)答案2024年湖南大學(xué)
評(píng)論
0/150
提交評(píng)論