




已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
概率論與數(shù)理統(tǒng)計總復習第一章 概率論的基本概念1. 事件的關系及運算互不相容事件: 即A,B不能同時發(fā)生。對立事件:且 即差事件: 即 發(fā)生但不發(fā)生的事件切記:2. 概率的性質(zhì)單調(diào)性:若,則 加法定理: 例1 設,求。解: ()故 由此 () 注:求事件的概率嚴禁畫文氏圖說明,一定要用概率的性質(zhì)計算。3. 條件概率與三個重要公式乘法公式全概率公式 貝葉斯公式(求事后概率)例2、(10分)盒中有6個新乒乓球,每次比賽從其中任取兩個球來用,賽后仍放回盒中,求第三次取得兩個新球的概率。解:設Ai第2次摸出i個新球(i=0,1,2), B第3次摸出兩個新球 A0,A1,A2構成的一個劃分 由全概率公式 其中故4. 事件的獨立性 A與B獨立P(AB)=P(A)P(B) P(B/A)= P(B)A與B互不相容 AB= P(AB)=P(A)+P(B)注:n(2)個事件兩兩獨立與相互獨立的區(qū)別!例3若A 與B 獨立,且A 與B 互不相容,則P(A)P(B)=_第二、三章 隨機變量及其分布1. 5中常見分布及其對應模型和相互關系;2. 聯(lián)合分布函數(shù)、邊緣分布函數(shù)、聯(lián)合分布律、邊緣分布律、聯(lián)合概率密度、邊緣概率密度之間的關系;3. 隨機變量落在某區(qū)間(域)的概率 5. 隨機變量函數(shù)的分布1) 公式法2) 分布函數(shù)法 注意畫圖分段討論6. 隨機變量的獨立性若r.v X、Y相互獨立試考慮其它等價條件? 注:若r.v X、Y相互獨立 反之不成立。見習題四 21例4 設X,Y聯(lián)合概率密度如下,問它們是否相互獨立? 解:X,Y的邊緣概率密度為同理顯然 故不相互獨立例5 設隨機變量X與Y相互獨立, 其概率密度分別為求隨機變量Z=X+Y的概率密度函數(shù)fZ(z).解其中D如圖,則xzz=x+1Dz=x第四章 隨機變臉的數(shù)字特征1. 期望與方差的意義 期望:隨機變量取值的集中點; 方差:隨機變量取值離集中點的偏離程度2. 熟記5種常見分布的期望與方差3. 隨機變量的函數(shù)的期望(定理4.1.1,定理4.1.2)4. 利用期望與方差的性質(zhì)求期望與方差(涉及隨機變量的分解)例6 民航機場的送客汽車載有20名乘客,從機場開出,乘客可以在10個車站下車,如果到達某一站時無顧客下車,則不停車,設隨機變量X表示停車次數(shù),假定每個乘客在各站下車都是等可能的,求平均停車次數(shù)。解:設為汽車在第站停車次數(shù),則因每個乘客在每站下車等可能,故所以,而 故 5.協(xié)方差的計算與相關系數(shù)的實際意義 1)隨機變量相互獨立則他們不相關 2)對二維正態(tài)隨機變量,不相關等價于相互獨立 例,隨機變量X, Y均是正態(tài)隨機變量,他們不相關,問他們時候獨立。6多維正態(tài)隨機變量的性質(zhì)(P118)例 , 且相互獨立.(1)寫出隨機變量(X+Y)與(XY)的概率密度(2)求隨機變量(X+Y)與(XY)的相關系數(shù);(3)隨機變量(X+Y)與(XY)是否相互獨立?解 令 U=X+Y, V=XY(1) E(U)= E(X)+E(Y)=3; D(U)= D(X)+D (Y)=22; E(V)= E(X ) E(Y )=; D(V)= D(X ) + D(Y )=22故 (2)E(X+Y) (XY)= E(X2 )E(Y2 )= D(X) +E(X ) 2 D(Y)E(Y )2 = 32因為,是相互獨立的正態(tài)分布,所以(X ,Y )是二維正態(tài)分布,從而(U,V)也是二維正態(tài)分布.由二維正態(tài)分布的性質(zhì)和(2),可知X+Y與X-Y相互獨立例(習題四,21)設隨機變量,設,試求(1) Z的數(shù)學期望與方差;(2) X與Z的相關系數(shù);(3) 問X與Z是否相互獨立。解:(1) (2) 而故(3)因(X,Y)是二維正態(tài)隨機變量,X, Z均是X,Y的線性組合,故(X,Z)也是二維正態(tài)隨機變量,而他們不相關故獨立。第五章 1. 切比雪夫不等式: 注:切比雪夫不等式只能粗略估計概率,一般除題目特殊說明不能使用。2.中心極限定理 注意是極限運算,要注意打不等號 例 隨機抽查驗收產(chǎn)品, 如果在一批產(chǎn)品中查出10個以上的次品, 則拒絕接收.問至少檢查多少個產(chǎn)品, 能保證次品率為 10%的一批產(chǎn)品被拒收的概率不低于0.9解 設檢查的產(chǎn)品數(shù)為 n, 查出的次品數(shù)為X, 則X B( n, 0.1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加油站電氣火災應急演練預案(3篇)
- 行政權行使的法律原則試題及答案
- 地震火災應急預案-流程(3篇)
- 行政法學基礎提升試題及答案
- 2025年法學概論考試新探索試題及答案
- 探索2025年軟件設計師考試試題及答案
- 高考數(shù)學復習資料與答案整合
- 2025年法學概論考試??荚囶}及答案網(wǎng)上分享
- 能源政策與經(jīng)濟增長的關聯(lián)試題及答案
- 有效資源分配的方法計劃
- 六一兒童節(jié)英語介紹課件
- 中科曙光2025測評
- 登臨詩 詩歌賞析
- 免修申請表(模板)
- 電阻的測量-伏安法的實驗報告
- 公司應急救援物資臺賬
- 超限梁板支撐架專項施工方案(濱州醫(yī)院)
- 最新中山市中小學校情況一覽表
- 地理信息安全在線培訓考試-填空題
- 多介質(zhì)過濾器計算書
- 常用鋼制管件彎頭、三通、異徑管、管帽理論重量體積表
評論
0/150
提交評論