立體幾何定理及高考題.doc_第1頁
立體幾何定理及高考題.doc_第2頁
立體幾何定理及高考題.doc_第3頁
立體幾何定理及高考題.doc_第4頁
立體幾何定理及高考題.doc_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

立體幾何知識點(diǎn)及高考題立體幾何定理基本概念公理1:如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個平面內(nèi)。公理2:如果兩個平面有一個公共點(diǎn),那么它們有且只有一條通過這個點(diǎn)的公共直線。公理3: 過不在同一條直線上的三個點(diǎn),有且只有一個平面。推論1:經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個平面。推論2:經(jīng)過兩條相交直線,有且只有一個平面。推論3:經(jīng)過兩條平行直線,有且只有一個平面。公理4 :平行于同一條直線的兩條直線互相平行。等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等??臻g兩直線的位置關(guān)系:空間兩條直線只有三種位置關(guān)系:平行、相交、異面1、按是否共面可分為兩類:(1)共面: 平行、 相交(2)異面:異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。 異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。兩異面直線所成的角:范圍為 ( 0,90 ) esp.空間向量法兩異面直線間距離: 公垂線段(有且只有一條) esp.空間向量法2、若從有無公共點(diǎn)的角度看可分為兩類:(1)有且僅有一個公共點(diǎn)相交直線;(2)沒有公共點(diǎn) 平行或異面直線和平面的位置關(guān)系: 直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行直線在平面內(nèi)有無數(shù)個公共點(diǎn)直線和平面相交有且只有一個公共點(diǎn)直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。esp.空間向量法(找平面的法向量)規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0角 由此得直線和平面所成角的取值范圍為 0,90最小角定理: 斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角三垂線定理及逆定理: 如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直esp.直線和平面垂直直線和平面垂直的定義:如果一條直線a和一個平面 內(nèi)的任意一條直線都垂直,我們就說直線a和平面 互相垂直.直線a叫做平面 的垂線,平面 叫做直線a的垂面。直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行沒有公共點(diǎn)直線和平面平行的定義:如果一條直線和一個平面沒有公共點(diǎn),那么我們就說這條直線和這個平面平行。直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。兩個平面的位置關(guān)系:(1)兩個平面互相平行的定義:空間兩平面沒有公共點(diǎn)(2)兩個平面的位置關(guān)系:兩個平面平行-沒有公共點(diǎn); 兩個平面相交-有一條公共直線。a、平行兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交二面角(1) 半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。(2) 二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為 0,180(3) 二面角的棱:這一條直線叫做二面角的棱。(4) 二面角的面:這兩個半平面叫做二面角的面。(5) 二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。(6) 直二面角:平面角是直角的二面角叫做直二面角。esp. 兩平面垂直兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為 兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。Attention:二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)性例題1.(10北京17)(本小題共13分)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直。EF/AC,AB=,CE=EF=1()求證:AF/平面BDE;()求證:CF平面BDF;2.(10陜西)如圖,在四棱錐PABCD中,底面ABCD是矩形,PA平面ABCD,AP=AB,BP=BC=2,E,F(xiàn)分別是PB,PC的中點(diǎn).()證明:EF平面PAD;()求三棱錐EABC的體積V.3.(10山東)在如圖所示的幾何體中,四邊形是正方形,,分別為、的中點(diǎn),且 ()求證:平面; ()求三棱錐4.(10安徽)如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EFAB,EFFB,BFC=90,BF=FC,H為BC的中點(diǎn),()求證:FH平面EDB;()求證:AC平面EDB; ()求VBDEF 5.(10江蘇本小題滿分14分)如圖,在四棱錐P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,ABDC,BCD=900。(1) 求證:PCBC;(2) 求點(diǎn)A到平面PBC的距離。6.(11北京17)如圖,在四面體PABC中,PCAB,PABC,點(diǎn)D,E,F,G分別是棱AP,AC,BC,PB的中點(diǎn).()求證:DE平面BCP;()求證:四邊形DEFG為矩形;7.如圖,四棱錐P-ABCD中,PA底面ABCD,ABAD,點(diǎn)E在線段AD上,且CEAB。(1) 求證:CE平面PAD;(11)若PA=AB=1,AD=3,CD=,CDA=45,求四棱錐P-ABCD的體積8.(11安徽19)(本小題滿分13分)如圖,為多面體,平面與平面垂直,點(diǎn)在線段上,OAB,OAC,ODE,ODF都是正三角形。()證明直線;()求棱錐的體積.9.(11重慶20)(本小題滿分12分,()小問6分,()小問6分) 如題(20)圖,在四面體中,平面ABC平面, ()求四面體ABCD的體積; ()求二面角C-AB-D的平面角的正切值。10.(11新課標(biāo)18)(本小題滿分12分)如圖,四棱錐中,底面ABCD為平行四邊形,底面ABCD(I)證明:;(II)設(shè)PD=AD=1,求棱錐D-PBC的高11.(11天津17)(本小題滿分13分)如圖,在四棱錐中,底面為平行四邊形,為中點(diǎn), 平面,為中點(diǎn)()證明:/平面;()證明:平面;12.(11山東19)如圖,在四棱臺中,平面,底面是平行四邊形,60()證明:;()證明:13.如圖,已知空間四

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論