概率論與數(shù)理統(tǒng)計(jì)習(xí)題答案-修訂版-復(fù)旦大學(xué).doc_第1頁(yè)
概率論與數(shù)理統(tǒng)計(jì)習(xí)題答案-修訂版-復(fù)旦大學(xué).doc_第2頁(yè)
概率論與數(shù)理統(tǒng)計(jì)習(xí)題答案-修訂版-復(fù)旦大學(xué).doc_第3頁(yè)
概率論與數(shù)理統(tǒng)計(jì)習(xí)題答案-修訂版-復(fù)旦大學(xué).doc_第4頁(yè)
概率論與數(shù)理統(tǒng)計(jì)習(xí)題答案-修訂版-復(fù)旦大學(xué).doc_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余85頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

概率論與數(shù)理統(tǒng)計(jì)習(xí)題及答案習(xí)題 一1略.見(jiàn)教材習(xí)題參考答案.2.設(shè)A,B,C為三個(gè)事件,試用A,B,C的運(yùn)算關(guān)系式表示下列事件:(1) A發(fā)生,B,C都不發(fā)生; (2) A與B發(fā)生,C不發(fā)生;(3) A,B,C都發(fā)生; (4) A,B,C至少有一個(gè)發(fā)生;(5) A,B,C都不發(fā)生; (6) A,B,C不都發(fā)生;(7) A,B,C至多有2個(gè)發(fā)生; (8) A,B,C至少有2個(gè)發(fā)生.【解】(1) A (2) AB (3) ABC(4) ABC=CBABCACABABC=(5) = (6) (7) BCACABCAB=(8) ABBCCA=ABACBCABC3.略.見(jiàn)教材習(xí)題參考答案4.設(shè)A,B為隨機(jī)事件,且P(A)=0.7,P(A-B)=0.3,求P().【解】 P()=1-P(AB)=1-P(A)-P(A-B)=1-0.7-0.3=0.65.設(shè)A,B是兩事件,且P(A)=0.6,P(B)=0.7,求:(1) 在什么條件下P(AB)取到最大值?(2) 在什么條件下P(AB)取到最小值?【解】(1) 當(dāng)AB=A時(shí),P(AB)取到最大值為0.6.(2) 當(dāng)AB=時(shí),P(AB)取到最小值為0.3.6.設(shè)A,B,C為三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件發(fā)生的概率.【解】 P(ABC)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=+-=23.設(shè)P()=0.3,P(B)=0.4,P(A)=0.5,求P(BA)【解】 33.三人獨(dú)立地破譯一個(gè)密碼,他們能破譯的概率分別為,求將此密碼破譯出的概率.【解】 設(shè)Ai=第i人能破譯(i=1,2,3),則 34.甲、乙、丙三人獨(dú)立地向同一飛機(jī)射擊,設(shè)擊中的概率分別是0.4,0.5,0.7,若只有一人擊中,則飛機(jī)被擊落的概率為0.2;若有兩人擊中,則飛機(jī)被擊落的概率為0.6;若三人都擊中,則飛機(jī)一定被擊落,求:飛機(jī)被擊落的概率.【解】設(shè)A=飛機(jī)被擊落,Bi=恰有i人擊中飛機(jī),i=0,1,2,3由全概率公式,得=(0.40.50.3+0.60.50.3+0.60.50.7)0.2+(0.40.50.3+0.40.50.7+0.60.50.7)0.6+0.40.50.7=0.458.習(xí)題二1.一袋中有5只乒乓球,編號(hào)為1,2,3,4,5,在其中同時(shí)取3只,以X表示取出的3只球中的最大號(hào)碼,寫(xiě)出隨機(jī)變量X的分布律.【解】故所求分布律為X345P0.10.30.62.設(shè)在15只同類(lèi)型零件中有2只為次品,在其中取3次,每次任取1只,作不放回抽樣,以X表示取出的次品個(gè)數(shù),求:(1) X的分布律;(2) X的分布函數(shù)并作圖;(3).【解】故X的分布律為X012P(2) 當(dāng)x0時(shí),F(xiàn)(x)=P(Xx)=0當(dāng)0x1時(shí),F(xiàn)(x)=P(Xx)=P(X=0)= 當(dāng)1x2時(shí),F(xiàn)(x)=P(Xx)=P(X=0)+P(X=1)=當(dāng)x2時(shí),F(xiàn)(x)=P(Xx)=1故X的分布函數(shù)(3) 3.射手向目標(biāo)獨(dú)立地進(jìn)行了3次射擊,每次擊中率為0.8,求3次射擊中擊中目標(biāo)的次數(shù)的分布律及分布函數(shù),并求3次射擊中至少擊中2次的概率.【解】設(shè)X表示擊中目標(biāo)的次數(shù).則X=0,1,2,3.故X的分布律為X0123P0.0080.0960.3840.512分布函數(shù)4.(1) 設(shè)隨機(jī)變量X的分布律為PX=k=,其中k=0,1,2,0為常數(shù),試確定常數(shù)a.(2) 設(shè)隨機(jī)變量X的分布律為PX=k=a/N, k=1,2,N,試確定常數(shù)a.【解】(1) 由分布律的性質(zhì)知故 (2) 由分布律的性質(zhì)知即 .5.甲、乙兩人投籃,投中的概率分別為0.6,0.7,今各投3次,求:(1) 兩人投中次數(shù)相等的概率;(2) 甲比乙投中次數(shù)多的概率.【解】分別令X、Y表示甲、乙投中次數(shù),則Xb(3,0.6),Yb(3,0.7)(1) + (2) =0.2436.設(shè)某機(jī)場(chǎng)每天有200架飛機(jī)在此降落,任一飛機(jī)在某一時(shí)刻降落的概率設(shè)為0.02,且設(shè)各飛機(jī)降落是相互獨(dú)立的.試問(wèn)該機(jī)場(chǎng)需配備多少條跑道,才能保證某一時(shí)刻飛機(jī)需立即降落而沒(méi)有空閑跑道的概率小于0.01(每條跑道只能允許一架飛機(jī)降落)?【解】設(shè)X為某一時(shí)刻需立即降落的飛機(jī)數(shù),則Xb(200,0.02),設(shè)機(jī)場(chǎng)需配備N(xiāo)條跑道,則有即 利用泊松近似查表得N9.故機(jī)場(chǎng)至少應(yīng)配備9條跑道.7.有一繁忙的汽車(chē)站,每天有大量汽車(chē)通過(guò),設(shè)每輛車(chē)在一天的某時(shí)段出事故的概率為0.0001,在某天的該時(shí)段內(nèi)有1000輛汽車(chē)通過(guò),問(wèn)出事故的次數(shù)不小于2的概率是多少(利用泊松定理)?【解】設(shè)X表示出事故的次數(shù),則Xb(1000,0.0001) 8.已知在五重貝努里試驗(yàn)中成功的次數(shù)X滿足PX=1=PX=2,求概率PX=4.【解】設(shè)在每次試驗(yàn)中成功的概率為p,則故 所以 .9.設(shè)事件A在每一次試驗(yàn)中發(fā)生的概率為0.3,當(dāng)A發(fā)生不少于3次時(shí),指示燈發(fā)出信號(hào),(1) 進(jìn)行了5次獨(dú)立試驗(yàn),試求指示燈發(fā)出信號(hào)的概率;(2) 進(jìn)行了7次獨(dú)立試驗(yàn),試求指示燈發(fā)出信號(hào)的概率.【解】(1) 設(shè)X表示5次獨(dú)立試驗(yàn)中A發(fā)生的次數(shù),則X6(5,0.3)(2) 令Y表示7次獨(dú)立試驗(yàn)中A發(fā)生的次數(shù),則Yb(7,0.3)10.某公安局在長(zhǎng)度為t的時(shí)間間隔內(nèi)收到的緊急呼救的次數(shù)X服從參數(shù)為(1/2)t的泊松分布,而與時(shí)間間隔起點(diǎn)無(wú)關(guān)(時(shí)間以小時(shí)計(jì)).(1) 求某一天中午12時(shí)至下午3時(shí)沒(méi)收到呼救的概率;(2) 求某一天中午12時(shí)至下午5時(shí)至少收到1次呼救的概率.【解】(1) (2) 11.設(shè)PX=k=, k=0,1,2PY=m=, m=0,1,2,3,4分別為隨機(jī)變量X,Y的概率分布,如果已知PX1=,試求PY1.【解】因?yàn)?,?而 故得 即 從而 12.某教科書(shū)出版了2000冊(cè),因裝訂等原因造成錯(cuò)誤的概率為0.001,試求在這2000冊(cè)書(shū)中恰有5冊(cè)錯(cuò)誤的概率.【解】令X為2000冊(cè)書(shū)中錯(cuò)誤的冊(cè)數(shù),則Xb(2000,0.001).利用泊松近似計(jì)算,得 13.進(jìn)行某種試驗(yàn),成功的概率為,失敗的概率為.以X表示試驗(yàn)首次成功所需試驗(yàn)的次數(shù),試寫(xiě)出X的分布律,并計(jì)算X取偶數(shù)的概率.【解】14.有2500名同一年齡和同社會(huì)階層的人參加了保險(xiǎn)公司的人壽保險(xiǎn).在一年中每個(gè)人死亡的概率為0.002,每個(gè)參加保險(xiǎn)的人在1月1日須交12元保險(xiǎn)費(fèi),而在死亡時(shí)家屬可從保險(xiǎn)公司領(lǐng)取2000元賠償金.求:(1) 保險(xiǎn)公司虧本的概率;(2) 保險(xiǎn)公司獲利分別不少于10000元、20000元的概率.【解】以“年”為單位來(lái)考慮.(1) 在1月1日,保險(xiǎn)公司總收入為250012=30000元.設(shè)1年中死亡人數(shù)為X,則Xb(2500,0.002),則所求概率為由于n很大,p很小,=np=5,故用泊松近似,有(2) P(保險(xiǎn)公司獲利不少于10000) 即保險(xiǎn)公司獲利不少于10000元的概率在98%以上P(保險(xiǎn)公司獲利不少于20000) 即保險(xiǎn)公司獲利不少于20000元的概率約為62%15.已知隨機(jī)變量X的密度函數(shù)為f(x)=Ae-|x|, -x+,求:(1)A值;(2)P0X1; (3) F(x).【解】(1) 由得故 .(2) (3) 當(dāng)x0時(shí),當(dāng)x0時(shí), 故 16.設(shè)某種儀器內(nèi)裝有三只同樣的電子管,電子管使用壽命X的密度函數(shù)為f(x)=求:(1) 在開(kāi)始150小時(shí)內(nèi)沒(méi)有電子管損壞的概率;(2) 在這段時(shí)間內(nèi)有一只電子管損壞的概率;(3) F(x).【解】(1) (2) (3) 當(dāng)x100時(shí)F(x)=0當(dāng)x100時(shí) 故 17.在區(qū)間0,a上任意投擲一個(gè)質(zhì)點(diǎn),以X表示這質(zhì)點(diǎn)的坐標(biāo),設(shè)這質(zhì)點(diǎn)落在0,a中任意小區(qū)間內(nèi)的概率與這小區(qū)間長(zhǎng)度成正比例,試求X的分布函數(shù).【解】 由題意知X0,a,密度函數(shù)為故當(dāng)xa時(shí),F(xiàn)(x)=1即分布函數(shù)18.設(shè)隨機(jī)變量X在2,5上服從均勻分布.現(xiàn)對(duì)X進(jìn)行三次獨(dú)立觀測(cè),求至少有兩次的觀測(cè)值大于3的概率.【解】XU2,5,即故所求概率為19.設(shè)顧客在某銀行的窗口等待服務(wù)的時(shí)間X(以分鐘計(jì))服從指數(shù)分布.某顧客在窗口等待服務(wù),若超過(guò)10分鐘他就離開(kāi).他一個(gè)月要到銀行5次,以Y表示一個(gè)月內(nèi)他未等到服務(wù)而離開(kāi)窗口的次數(shù),試寫(xiě)出Y的分布律,并求PY1.【解】依題意知,即其密度函數(shù)為該顧客未等到服務(wù)而離開(kāi)的概率為,即其分布律為20.某人乘汽車(chē)去火車(chē)站乘火車(chē),有兩條路可走.第一條路程較短但交通擁擠,所需時(shí)間X服從N(40,102);第二條路程較長(zhǎng),但阻塞少,所需時(shí)間X服從N(50,42).(1) 若動(dòng)身時(shí)離火車(chē)開(kāi)車(chē)只有1小時(shí),問(wèn)應(yīng)走哪條路能乘上火車(chē)的把握大些?(2) 又若離火車(chē)開(kāi)車(chē)時(shí)間只有45分鐘,問(wèn)應(yīng)走哪條路趕上火車(chē)把握大些?【解】(1) 若走第一條路,XN(40,102),則若走第二條路,XN(50,42),則+故走第二條路乘上火車(chē)的把握大些.(2) 若XN(40,102),則若XN(50,42),則 故走第一條路乘上火車(chē)的把握大些.21.設(shè)XN(3,22),(1) 求P2X5,P-4X10,PX2,PX3;(2) 確定c使PXc=PXc.【解】(1) (2) c=322.由某機(jī)器生產(chǎn)的螺栓長(zhǎng)度(cm)XN(10.05,0.062),規(guī)定長(zhǎng)度在10.050.12內(nèi)為合格品,求一螺栓為不合格品的概率.【解】 23.一工廠生產(chǎn)的電子管壽命X(小時(shí))服從正態(tài)分布N(160,2),若要求P120X2000.8,允許最大不超過(guò)多少?【解】 故 24.設(shè)隨機(jī)變量X分布函數(shù)為F(x)=(1) 求常數(shù)A,B;(2) 求PX2,PX3;(3) 求分布密度f(wàn)(x).【解】(1)由得(2) (3) 25.設(shè)隨機(jī)變量X的概率密度為f(x)=求X的分布函數(shù)F(x),并畫(huà)出f(x)及F(x).【解】當(dāng)x0時(shí)F(x)=0當(dāng)0x1時(shí) 當(dāng)1x0;(2) f(x)=試確定常數(shù)a,b,并求其分布函數(shù)F(x).【解】(1) 由知故 即密度函數(shù)為 當(dāng)x0時(shí)當(dāng)x0時(shí) 故其分布函數(shù)(2) 由得 b=1即X的密度函數(shù)為當(dāng)x0時(shí)F(x)=0當(dāng)0x1時(shí) 當(dāng)1x0時(shí), 故 (2)當(dāng)y1時(shí)當(dāng)y1時(shí) 故 (3) 當(dāng)y0時(shí)當(dāng)y0時(shí) 故31.設(shè)隨機(jī)變量XU(0,1),試求:(1) Y=eX的分布函數(shù)及密度函數(shù);(2) Z=-2lnX的分布函數(shù)及密度函數(shù).【解】(1) 故 當(dāng)時(shí)當(dāng)1ye時(shí)當(dāng)ye時(shí)即分布函數(shù)故Y的密度函數(shù)為(2) 由P(0X0時(shí), 即分布函數(shù)故Z的密度函數(shù)為32.設(shè)隨機(jī)變量X的密度函數(shù)為f(x)=試求Y=sinX的密度函數(shù).【解】當(dāng)y0時(shí),當(dāng)0y1時(shí), 當(dāng)y1時(shí),故Y的密度函數(shù)為33.設(shè)隨機(jī)變量X的分布函數(shù)如下:試填上(1),(2),(3)項(xiàng).【解】由知填1。由右連續(xù)性知,故為0。從而亦為0。即34.同時(shí)擲兩枚骰子,直到一枚骰子出現(xiàn)6點(diǎn)為止,求拋擲次數(shù)X的分布律.【解】設(shè)Ai=第i枚骰子出現(xiàn)6點(diǎn)。(i=1,2),P(Ai)=.且A1與A2相互獨(dú)立。再設(shè)C=每次拋擲出現(xiàn)6點(diǎn)。則 故拋擲次數(shù)X服從參數(shù)為的幾何分布。35.隨機(jī)數(shù)字序列要多長(zhǎng)才能使數(shù)字0至少出現(xiàn)一次的概率不小于0.9?【解】令X為0出現(xiàn)的次數(shù),設(shè)數(shù)字序列中要包含n個(gè)數(shù)字,則Xb(n,0.1)即 得 n22即隨機(jī)數(shù)字序列至少要有22個(gè)數(shù)字。36.已知F(x)=則F(x)是( )隨機(jī)變量的分布函數(shù).(A) 連續(xù)型; (B)離散型;(C) 非連續(xù)亦非離散型.【解】因?yàn)镕(x)在(-,+)上單調(diào)不減右連續(xù),且,所以F(x)是一個(gè)分布函數(shù)。但是F(x)在x=0處不連續(xù),也不是階梯狀曲線,故F(x)是非連續(xù)亦非離散型隨機(jī)變量的分布函數(shù)。選(C)37.設(shè)在區(qū)間a,b上,隨機(jī)變量X的密度函數(shù)為f(x)=sinx,而在a,b外,f(x)=0,則區(qū)間 a,b等于( )(A) 0,/2; (B) 0,;(C) -/2,0; (D) 0,.【解】在上sinx0,且.故f(x)是密度函數(shù)。在上.故f(x)不是密度函數(shù)。在上,故f(x)不是密度函數(shù)。在上,當(dāng)時(shí),sinx0)=1,故01-e-2X1,即P(0Y1)=1當(dāng)y0時(shí),F(xiàn)Y(y)=0當(dāng)y1時(shí),F(xiàn)Y(y)=1當(dāng)0y1時(shí),即Y的密度函數(shù)為即YU(0,1)41.設(shè)隨機(jī)變量X的密度函數(shù)為f(x)=若k使得PXk=2/3,求k的取值范圍. (2000研考)【解】由P(Xk)=知P(Xk)=若k0,P(Xk)=0若0k1,P(Xk)= 當(dāng)k=1時(shí)P(Xk)=若1k3時(shí)P(Xk)=若3k6,則P(X6,則P(Xk)=1故只有當(dāng)1k3時(shí)滿足P(Xk)=.42.設(shè)隨機(jī)變量X的分布函數(shù)為F(x)=求X的概率分布. (1991研考)【解】由離散型隨機(jī)變量X分布律與分布函數(shù)之間的關(guān)系,可知X的概率分布為X-113P0.40.40.243.設(shè)三次獨(dú)立試驗(yàn)中,事件A出現(xiàn)的概率相等.若已知A至少出現(xiàn)一次的概率為19/27,求A在一次試驗(yàn)中出現(xiàn)的概率.【解】令X為三次獨(dú)立試驗(yàn)中A出現(xiàn)的次數(shù),若設(shè)P(A)=p,則Xb(3,p)由P(X1)=知P(X=0)=(1-p)3=故p=44.若隨機(jī)變量X在(1,6)上服從均勻分布,則方程y2+Xy+1=0有實(shí)根的概率是多少? 【解】45.若隨機(jī)變量XN(2,2),且P2X4=0.3,則PX0= . 【解】故 因此 46.假設(shè)一廠家生產(chǎn)的每臺(tái)儀器,以概率0.7可以直接出廠;以概率0.3需進(jìn)一步調(diào)試,經(jīng)調(diào)試后以概率0.8可以出廠,以概率0.2定為不合格品不能出廠.現(xiàn)該廠新生產(chǎn)了n(n2)臺(tái)儀器(假設(shè)各臺(tái)儀器的生產(chǎn)過(guò)程相互獨(dú)立).求(1) 全部能出廠的概率;(2) 其中恰好有兩臺(tái)不能出廠的概率;(3)其中至少有兩臺(tái)不能出廠的概率. 【解】設(shè)A=需進(jìn)一步調(diào)試,B=儀器能出廠,則=能直接出廠,AB=經(jīng)調(diào)試后能出廠由題意知B=AB,且令X為新生產(chǎn)的n臺(tái)儀器中能出廠的臺(tái)數(shù),則X6(n,0.94),故 47.某地抽樣調(diào)查結(jié)果表明,考生的外語(yǔ)成績(jī)(百分制)近似服從正態(tài)分布,平均成績(jī)?yōu)?2分,96分以上的占考生總數(shù)的2.3%,試求考生的外語(yǔ)成績(jī)?cè)?0分至84分之間的概率.【解】設(shè)X為考生的外語(yǔ)成績(jī),則XN(72,2)故 查表知 ,即=12從而XN(72,122)故 48.在電源電壓不超過(guò)200V、200V240V和超過(guò)240V三種情形下,某種電子元件損壞的概率分別為0.1,0.001和0.2(假設(shè)電源電壓X服從正態(tài)分布N(220,252).試求:(1) 該電子元件損壞的概率;(2) 該電子元件損壞時(shí),電源電壓在200240V的概率【解】設(shè)A1=電壓不超過(guò)200V,A2=電壓在200240V,A3=電壓超過(guò)240V,B=元件損壞。由XN(220,252)知 由全概率公式有由貝葉斯公式有49.設(shè)隨機(jī)變量X在區(qū)間(1,2)上服從均勻分布,試求隨機(jī)變量Y=e2X的概率密度f(wàn)Y(y).【解】因?yàn)镻(1X2)=1,故P(e2Ye4)=1當(dāng)ye2時(shí)FY(y)=P(Yy)=0. 當(dāng)e2y1時(shí), 即 故 51.設(shè)隨機(jī)變量X的密度函數(shù)為fX(x)=,求Y=1-的密度函數(shù)fY(y). 【解】 故 52.假設(shè)一大型設(shè)備在任何長(zhǎng)為t的時(shí)間內(nèi)發(fā)生故障的次數(shù)N(t)服從參數(shù)為t的泊松分布.(1) 求相繼兩次故障之間時(shí)間間隔T的概率分布;(2) 求在設(shè)備已經(jīng)無(wú)故障工作8小時(shí)的情形下,再無(wú)故障運(yùn)行8小時(shí)的概率Q.(1993研考)【解】(1) 當(dāng)tt與N(t)=0等價(jià),有即 即間隔時(shí)間T服從參數(shù)為的指數(shù)分布。(2) 53.設(shè)隨機(jī)變量X的絕對(duì)值不大于1,PX=-1=1/8,PX=1=1/4.在事件-1X1出現(xiàn)的條件下,X在-1,1內(nèi)任一子區(qū)間上取值的條件概率與該子區(qū)間長(zhǎng)度成正比,試求X的分布函數(shù)F(x)=PXx. (1997研考)【解】顯然當(dāng)x-1時(shí)F(x)=0;而x1時(shí)F(x)=1由題知當(dāng)-1x1時(shí),此時(shí) 當(dāng)x=-1時(shí),故X的分布函數(shù)54. 設(shè)隨機(jī)變量X服從正態(tài)分N(1,12),Y服從正態(tài)分布N(2,22),且P|X-1|P|Y-2|1,試比較1與2的大小. (2006研考)解: 依題意 ,則,.因?yàn)椋?,所以?,即.習(xí)題三1.將一硬幣拋擲三次,以X表示在三次中出現(xiàn)正面的次數(shù),以Y表示三次中出現(xiàn)正面次數(shù)與出現(xiàn)反面次數(shù)之差的絕對(duì)值.試寫(xiě)出X和Y的聯(lián)合分布律.【解】X和Y的聯(lián)合分布律如表:XY01231003002.盒子里裝有3只黑球、2只紅球、2只白球,在其中任取4只球,以X表示取到黑球的只數(shù),以Y表示取到紅球的只數(shù).求X和Y的聯(lián)合分布律.【解】X和Y的聯(lián)合分布律如表:XY0123000102P(0黑,2紅,2白)=03.設(shè)二維隨機(jī)變量(X,Y)的聯(lián)合分布函數(shù)為F(x,y)=求二維隨機(jī)變量(X,Y)在長(zhǎng)方形域內(nèi)的概率.【解】如圖 題3圖說(shuō)明:也可先求出密度函數(shù),再求概率。4.設(shè)隨機(jī)變量(X,Y)的分布密度f(wàn)(x,y)=求:(1) 常數(shù)A;(2) 隨機(jī)變量(X,Y)的分布函數(shù);(3) P0X1,0Y2.【解】(1) 由得 A=12(2) 由定義,有 (3) 5.設(shè)隨機(jī)變量(X,Y)的概率密度為f(x,y)=(1) 確定常數(shù)k;(2) 求PX1,Y3;(3) 求PX1.5;(4) 求PX+Y4.【解】(1) 由性質(zhì)有故 (2) (3) (4) 題5圖6.設(shè)X和Y是兩個(gè)相互獨(dú)立的隨機(jī)變量,X在(0,0.2)上服從均勻分布,Y的密度函數(shù)為fY(y)=求:(1) X與Y的聯(lián)合分布密度;(2) PYX.題6圖【解】(1) 因X在(0,0.2)上服從均勻分布,所以X的密度函數(shù)為而所以 (2) 7.設(shè)二維隨機(jī)變量(X,Y)的聯(lián)合分布函數(shù)為F(x,y)=求(X,Y)的聯(lián)合分布密度.【解】8.設(shè)二維隨機(jī)變量(X,Y)的概率密度為f(x,y)=求邊緣概率密度.【解】 題8圖 題9圖9.設(shè)二維隨機(jī)變量(X,Y)的概率密度為f(x,y)=求邊緣概率密度.【解】 題10圖10.設(shè)二維隨機(jī)變量(X,Y)的概率密度為f(x,y)=(1) 試確定常數(shù)c;(2) 求邊緣概率密度.【解】(1) 得.(2) 11.設(shè)隨機(jī)變量(X,Y)的概率密度為f(x,y)=求條件概率密度f(wàn)YX(yx),fXY(xy). 題11圖【解】 所以 12.袋中有五個(gè)號(hào)碼1,2,3,4,5,從中任取三個(gè),記這三個(gè)號(hào)碼中最小的號(hào)碼為X,最大的號(hào)碼為Y.(1) 求X與Y的聯(lián)合概率分布;(2) X與Y是否相互獨(dú)立?【解】(1) X與Y的聯(lián)合分布律如下表YX345120300(2) 因故X與Y不獨(dú)立13.設(shè)二維隨機(jī)變量(X,Y)的聯(lián)合分布律為XY2 5 80.40.80.15 0.30 0.350.05 0.12 0.03(1)求關(guān)于X和關(guān)于Y的邊緣分布;(2) X與Y是否相互獨(dú)立?【解】(1)X和Y的邊緣分布如下表XY258PY=yi0.40.150.300.350.80.80.050.120.030.20.20.420.38(2) 因故X與Y不獨(dú)立.14.設(shè)X和Y是兩個(gè)相互獨(dú)立的隨機(jī)變量,X在(0,1)上服從均勻分布,Y的概率密度為fY(y)=(1)求X和Y的聯(lián)合概率密度;(2) 設(shè)含有a的二次方程為a2+2Xa+Y=0,試求a有實(shí)根的概率.【解】(1) 因 故 題14圖(2) 方程有實(shí)根的條件是故 X2Y,從而方程有實(shí)根的概率為: 15.設(shè)X和Y分別表示兩個(gè)不同電子器件的壽命(以小時(shí)計(jì)),并設(shè)X和Y相互獨(dú)立,且服從同一分布,其概率密度為f(x)=求Z=X/Y的概率密度.【解】如圖,Z的分布函數(shù)(1) 當(dāng)z0時(shí),(2) 當(dāng)0z0)的泊松分布,每位乘客在中途下車(chē)的概率為p(0p1),且中途下車(chē)與否相互獨(dú)立,以Y表示在中途下車(chē)的人數(shù),求:(1)在發(fā)車(chē)時(shí)有n個(gè)乘客的條件下,中途有m人下車(chē)的概率;(2)二維隨機(jī)變量(X,Y)的概率分布.【解】(1) .(2) 24.設(shè)隨機(jī)變量X和Y獨(dú)立,其中X的概率分布為X,而Y的概率密度為f(y),求隨機(jī)變量U=X+Y的概率密度g(u). 【解】設(shè)F(y)是Y的分布函數(shù),則由全概率公式,知U=X+Y的分布函數(shù)為 由于X和Y獨(dú)立,可見(jiàn) 由此,得U的概率密度為 25. 25. 設(shè)隨機(jī)變量X與Y相互獨(dú)立,且均服從區(qū)間0,3上的均勻分布,求PmaxX,Y1.解:因?yàn)殡S即變量服從0,3上的均勻分布,于是有 因?yàn)閄,Y相互獨(dú)立,所以推得 .26. 設(shè)二維隨機(jī)變量(X,Y)的概率分布為XY -1 0 1 -101a 0 0.20.1 b 0.20 0.1 c其中a,b,c為常數(shù),且X的數(shù)學(xué)期望E(X)= -0.2,PY0|X0=0.5,記Z=X+Y.求:(1) a,b,c的值;(2) Z的概率分布;(3) PX=Z. 解 (1) 由概率分布的性質(zhì)知,a+b+c+0.6=1 即 a+b+c = 0.4.由,可得.再由 ,得 .解以上關(guān)于a,b,c的三個(gè)方程得.(2) Z的可能取值為-2,-1,0,1,2,即Z的概率分布為Z-2 -1 0 1 2P0.2 0.1 0.3 0.3 0.1(3) .習(xí)題四1.設(shè)隨機(jī)變量X的分布律為X -1 0 1 2P1/8 1/2 1/8 1/4求E(X),E(X2),E(2X+3).【解】(1) (2) (3) 2.已知100個(gè)產(chǎn)品中有10個(gè)次品,求任意取出的5個(gè)產(chǎn)品中的次品數(shù)的數(shù)學(xué)期望、方差.【解】設(shè)任取出的5個(gè)產(chǎn)品中的次品數(shù)為X,則X的分布律為X012345P故 3.設(shè)隨機(jī)變量X的分布律為X -1 0 1Pp1 p2 p3且已知E(X)=0.1,E(X2)=0.9,求P1,P2,P3.【解】因,又,由聯(lián)立解得4.袋中有N只球,其中的白球數(shù)X為一隨機(jī)變量,已知E(X)=n,問(wèn)從袋中任取1球?yàn)榘浊虻母怕适嵌嗌??【解】記A=從袋中任取1球?yàn)榘浊?,則 5.設(shè)隨機(jī)變量X的概率密度為f(x)=求E(X),D(X).【解】 故 6.設(shè)隨機(jī)變量X,Y,Z相互獨(dú)立,且E(X)=5,E(Y)=11,E(Z)=8,求下列隨機(jī)變量的數(shù)學(xué)期望.(1) U=2X+3Y+1;(2) V=YZ -4X.【解】(1) (2) 7.設(shè)隨機(jī)變量X,Y相互獨(dú)立,且E(X)=E(Y)=3,D(X)=12,D(Y)=16,求E(3X -2Y),D(2X -3Y).【解】(1) (2) 8.設(shè)隨機(jī)變量(X,Y)的概率密度為f(x,y)=試確定常數(shù)k,并求E(XY).【解】因故k=2.9.設(shè)X,Y是相互獨(dú)立的隨機(jī)變量,其概率密度分別為fX(x)= fY(y)=求E(XY).【解】方法一:先求X與Y的均值 由X與Y的獨(dú)立性,得 方法二:利用隨機(jī)變量函數(shù)的均值公式.因X與Y獨(dú)立,故聯(lián)合密度為于是10.設(shè)隨機(jī)變量X,Y的概率密度分別為fX(x)= fY(y)=求(1) E(X+Y);(2) E(2X -3Y2).【解】 從而(1)(2)11.設(shè)隨機(jī)變量X的概率密度為f(x)=求(1) 系數(shù)c;(2) E(X);(3) D(X).【解】(1) 由

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論