已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
【2009高考第一輪復(fù)習(xí)講義】1.4簡(jiǎn)單的邏輯聯(lián)結(jié)詞,全稱量詞與存在量詞(教案)教學(xué)目標(biāo):了解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義及真值表;理解全稱量詞與存在量詞的意義;能正確對(duì)含有一個(gè)量詞的命題的否定。注意:否命題與命題的否定的區(qū)別。反證法的應(yīng)用知識(shí)點(diǎn):一、邏輯聯(lián)結(jié)詞:1、定義:“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞簡(jiǎn)單命題:不含有邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題復(fù)合命題:由簡(jiǎn)單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題2邏輯符號(hào):“或”的符號(hào)是“”,例如“P或q”可以記作“P q”;“且”的符號(hào)是“”,例如,“P且q”可以記作“Pq”;“非”的符號(hào)是“”,例如,“非P”可以記作“P”二、復(fù)合命題的構(gòu)成形式的表示:如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過(guò)的有以下三種: : :即:p或q 記作 pq p且q 記作 pq 非p (命題的否定) 記作 p其實(shí),有些概念前面已遇到過(guò)如:或:不等式 -x-60的解集 x | x3 且:不等式-x-60的解集 x | -2 x-2且x3 釋義:“p或q”是指p,q中的任何一個(gè)或兩者.例如,“xA或xB”,是指x可能屬于A但不屬于B(這里的“但”等價(jià)于“且”),x也可能不屬于A但屬于B,x還可能既屬于A又屬于B(即xAB);又如在“p或q真”中,可能只有p真,也可能只有q真,還可能p,q都為真.“p且q”是指p,q中的兩者.例如,“xA且xB”,是指x屬于A,同時(shí)x也屬于B(即xAB).“非p”是指p的否定,即不是p. 例如,p是“xA”,則“非p”表示x不是集合A的元素(即x).又如(1)(2)三、真值表“非p”形式復(fù)合命題的真假可以用下表表示: p非p真假“p且q”、“”形式復(fù)合命題的真假可以用下表表示:Pqp且qP或q真真真假假真假假四、全稱量詞及表示:1、表示全體的量詞稱為全稱量詞。表示行式為“任意x”,“每一個(gè)x”,“所有x”等。通常用符號(hào)“x”表示,讀作“對(duì)任意X”。2、存在量詞及表示法,表示部分的量稱為存在量詞。表示形式為“有x”,“存在x”等。通常用符號(hào)“x”表示,讀作“存在x”。注:(1)全稱量詞的含義及意義形式。 (2)注意全稱量詞存在的前提。3、全稱命題、存在性命題及表示形式 含有全稱量詞的命題稱為全稱命題,表示為:xM,P(x) 含有存在量詞的命題稱為存在性命題,表示為:xM,P(x) 其中,M為給定的集合,P(x)是一個(gè)關(guān)于x的命題。五、反證法:利用反證法證明時(shí),關(guān)鍵是從假設(shè)結(jié)論的反面出發(fā),經(jīng)過(guò)推理論證,得出相矛盾的結(jié)論,這是由假設(shè)所引起的,因此這個(gè)假設(shè)是不正確的,從而肯定了命題結(jié)論的正確性反證法證題的關(guān)鍵是:第二步即從結(jié)論的反面出發(fā),經(jīng)過(guò)推理論證,得出矛盾反證法引出的矛盾有以下幾種情況:(1)與原題中的條件矛盾;(2)與定義、公理、定理、公式等矛盾;(3)與假設(shè)矛盾反證法是一種證明題目的間接方法,在有些題目的證明中用反證法非常簡(jiǎn)潔,但并不是每一題用反證都恰倒好處,那么,對(duì)于哪些題目適合用反證法呢?(1)從這些條件推出所知的也很少或無(wú)法用已知條件進(jìn)行直接證明的(2)當(dāng)問(wèn)題中能用來(lái)作為推理依據(jù)的公理、定理很少,無(wú)法直接證明或證明無(wú)從下手的(3)結(jié)論以否定的形式出現(xiàn),無(wú)法引用定理來(lái)證明否定形式的結(jié)論(4)對(duì)要證明的命題,已知它的逆命題是正確的(5)要求證明的命題適合某種條件的結(jié)論唯一存在對(duì)反證法的掌握,還有待于隨著學(xué)習(xí)的深入,逐步提高六、典型例題:例1、寫(xiě)出由下列各組命題構(gòu)成的“p或q”,“p且q”,“非p”形式的新命題并判斷真假.(1)p:2是4的約數(shù),q:2是6的約數(shù);解:p或q:2是4的約數(shù)或2是6的約數(shù),真命題;p且q:2是4的約數(shù)且2也是6的約數(shù),真命題;非p:2不是4的約數(shù),假命題。(2)p:矩形的對(duì)角線相等,q:矩形的對(duì)角線互相平分;解:p或q:矩形的對(duì)角線相等或互相平分,真命題;p且q:矩形的對(duì)角線相等且互相平分,真命題;非p:矩形的對(duì)角線不相等,假命題。(3)p:方程的兩實(shí)根的符號(hào)相同,q:方程的兩實(shí)根的絕對(duì)值相等;解:p或q:方程的兩實(shí)根符號(hào)相同或絕對(duì)值相等,假命題。p且q:方程的兩實(shí)根符號(hào)相同且絕對(duì)值相等,假命題。非p:方程的兩實(shí)根符號(hào)不相同,真命題。補(bǔ)充:(4)p:方程的解是,q:方程的解是解:“” 方程的解是或方程的解是“”、方程的解是且方程的解是“非p” 方程的解不是,因?yàn)閜假,q假,所以“”為假,“”為假,“非p”為真。例2、試判斷下列命題的真假(1);真命題(2);假命題(3);假命題(4);假命題(5);假命題分析:如何判斷一個(gè)命題是全稱命題還是存在性命題及命題的真假。注:(1)如何判斷一個(gè)命題的全稱命題還是存在命題,主要依據(jù)是看是否有全稱量詞,存在量詞(顯性的)。(2)如果命題是隱性的全稱命題,存在性命題,應(yīng)該先進(jìn)行轉(zhuǎn)化再判斷。(3)判斷一個(gè)存在性命題為真,只要在給定的集合中,找到一個(gè)元素x,使命題P(x)為真,否則命題為假。(4)要判斷一個(gè)全稱命題為真,必須對(duì)給定的集合中的每一個(gè)元素X,P(x)都為真。但要判斷一個(gè)全稱命題為假,只要在給定的集合內(nèi)找到一個(gè)x,使P(x)為假。例3、寫(xiě)出下列命題的否定并判斷真假分析:含有一個(gè)量詞的否定:的否定為的否定為“(1)p:所有末位數(shù)字是0或5的整數(shù)都能被5整除;解:存在未位數(shù)字是0或5的整數(shù)但它不能被5整除,假命題(2)p:每一個(gè)非負(fù)數(shù)的平方都是正數(shù);解:存在一個(gè)非負(fù)數(shù)的平方它不是正數(shù),真命題。(3)p:存在一個(gè)三角形,它的內(nèi)角和大于;解:任何一個(gè)三角形它的內(nèi)角和都不大于180,真命題(4)p:有的四邊形沒(méi)有外接圓;解:所有的四邊形都有外接圓,假命題(5)p:某些梯形的對(duì)角線互相平分.解:任一梯形的對(duì)角線都不互相平分,真命題點(diǎn)評(píng):注意語(yǔ)言運(yùn)用轉(zhuǎn)化,語(yǔ)言用詞準(zhǔn)確, 書(shū)寫(xiě)合理規(guī)范.例4、寫(xiě)出下列命題的否定及否命題,并判斷有何區(qū)別?(1)兩組對(duì)邊平行的四邊形是平行四邊形; (2)正整數(shù)1既不是質(zhì)數(shù)也不是合數(shù)。分析:表述時(shí),語(yǔ)言準(zhǔn)確精練。解題時(shí)要規(guī)定格式.語(yǔ)句前后的邏輯性.解:(1)命題的否定:兩組對(duì)邊平行的四邊形不是平行四邊形。否命題:兩組對(duì)也不全平行的四邊形不是平行四邊形。(2)命題的否定:正整數(shù)1是質(zhì)數(shù)或是合數(shù)。否命題:不是1的正整數(shù)是質(zhì)數(shù)或是合數(shù)。歸納:(1)命題的否定與命題的否命題是不同的. (2)要正確的理解命題的含義.正確使用否定詞.(3)常用否定詞的否定.正面詞 等于 大于 小于 是 都是 至少一個(gè) 至多一個(gè).否定 不等于 不大于 不小于 不是 不都是 一個(gè)也沒(méi)有 至少兩個(gè) 小于等于 大于等于例5、(04年福建3)命題p:若的充分不必要條件;命題q:函數(shù)的定義域是,則 ( D )A“p或q”為假 B“p且q”為真 Cp真q假 Dp 假q真 分析:例6、已知命題p:當(dāng)時(shí),函數(shù)有意義;命題q:數(shù)列的前n項(xiàng)的和,且對(duì)于任意的正整數(shù)n均有.如果p和q中有且僅有一個(gè)正確,求t的取值范圍。 解:要使命題p成立,只要atax0,x恒成立即 x恒成立y=在單調(diào)增當(dāng)x=1時(shí),ymin=1t1即p真當(dāng)命題q成立時(shí),an=snsn1=2n1(n2)且a1=s1=1=211an=2n1(nN*)又anan1=2am為AP=q成立p、q有且只有一個(gè)正確p真q假或p假q真或 【備用題】 1) 證明:若“a2+2ab+b2+a+b20則a+b1”為真命題. 2) 已知,設(shè)P:函數(shù)在R上單調(diào)遞減,Q:不等式的解集為R。如果“P或Q”為真,求的取值范圍。解:(1)它的逆否命題為“若a+b=1,則a2+2ab+b2+a+b2=0a+b=1a2+2ab+b2+a+b2 =(a+b)2+(a+1)2 =12+11 =0其逆否命題為真命題原命題也為真命題(2)y=cx在R上單調(diào)減0c1p真0c“P”或“Q”為真所以有三種情況:“P”真或“Q”假“P”假或“Q”真“P”真或“Q”真解得: 綜上:C0(取并集)【作業(yè)】 班級(jí) 姓名 學(xué)號(hào) 1、分別用“p或q”“p且q”“非p”填空: (1)“b是自然數(shù)且為偶數(shù)”是 p且q 形式;(2)“1不是方程x2+3x+1=0的根”是 非p 形式; (3)“負(fù)數(shù)沒(méi)有平方根”是 非p 形式;(4)“12是60和84的公因數(shù)”是 p且q 形式; (5)ABC是等腰直角三角形是 p且q 形式;(6)“方程x2+3x+2=0”的解集不是1,2是 非p 形式;(7)“0”是 p或q 形式。2、如果原命題是“若P則q”,寫(xiě)出它的逆命題,否命題,逆否命題及命題的否定.逆命題:若q則p 否命題:若p則q逆否命題:若q則p 命題的否定:若p則q3、分別指出下列各組命題構(gòu)成“p或q”,“p且q”,“非p”形式的復(fù)合命題的真假, p:5+1015,q:32 “p或q”真,“p且q”假,“非p”真p:x2+1x2 “p或q”假,“p且q”假,“非p”真p:無(wú)理數(shù)與有理數(shù)的積必為無(wú)理數(shù) q:無(wú)理數(shù)與有理數(shù)的和必為無(wú)理數(shù)“p或q”真,“p且q”假,“非p”真p:若,都是銳角,且,則sinsin q:若,都是銳角,且,則coscos“p或q”真,“p且q”假,“非p”假4、寫(xiě)出下列命題的否定,并判斷真假.(1)正方形都是菱形; 存在一個(gè)正方形不是菱形 假 (2); 假 (3); 真(4)集合A是集合或集合的子集. 集合不是集合AB的子集且不是AB的子集 假5、下列3個(gè)全稱命題:(1)是整數(shù),(2),(3)對(duì)于任意一個(gè)是奇數(shù).其中正確命題的序號(hào)是 (3) 。6、設(shè)A、B為兩個(gè)集合,下列四個(gè)命題中真命題的序號(hào)是 (4) 。(1)對(duì)任意有;(2);(3);(4)存在,使得.7、與命題“若aM則bM”等價(jià)的命題是 ( C )A若bM則aM B若bM則aM C若bM則aM D若aM則bM8、設(shè)p:大于90的角叫鈍角,q:三角形三邊的垂直平分線交于一點(diǎn),則p、q的復(fù)合命題的真假是 ( D ) A“p或
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年華師大新版八年級(jí)數(shù)學(xué)上冊(cè)月考試卷
- 二零二五年度海洋運(yùn)輸船舶動(dòng)態(tài)監(jiān)測(cè)與安全評(píng)估合同3篇
- 2024年餐館經(jīng)理雇傭合同3篇
- 2024年職工食堂食品安全監(jiān)管承包經(jīng)營(yíng)合同3篇
- 2025年人教A新版六年級(jí)語(yǔ)文下冊(cè)月考試卷
- 二零二五年度微生物肥料研發(fā)成果轉(zhuǎn)化合同3篇
- 2025年北師大版七年級(jí)地理下冊(cè)階段測(cè)試試卷
- 2024版技術(shù)研發(fā)與成果共享合同
- 2024年滬科版九年級(jí)物理下冊(cè)月考試卷
- 2025年浙教新版九年級(jí)物理下冊(cè)階段測(cè)試試卷
- 地理信息系統(tǒng)試卷及答案
- 2023全球信息技術(shù)報(bào)告
- 部編版人教版五年級(jí)上冊(cè)《道德與法治》全冊(cè)教案-教學(xué)反思(新教材)
- 殯葬各領(lǐng)域知識(shí)點(diǎn)總結(jié)匯總
- 叉車維修檢驗(yàn)原始記錄
- Invoice商業(yè)發(fā)票模板
- 業(yè)務(wù)下單流程標(biāo)準(zhǔn)規(guī)范
- 科學(xué)版二年級(jí)《游戲迎面接力跑》評(píng)課稿
- 信訪事項(xiàng)復(fù)查申請(qǐng)書(shū)
- 巡檢記錄表巡檢記錄表
- 小學(xué)生家長(zhǎng)教育焦慮調(diào)查問(wèn)卷
評(píng)論
0/150
提交評(píng)論