數(shù)學(xué)人教版九年級上冊二次函數(shù)與平行四邊形.doc_第1頁
數(shù)學(xué)人教版九年級上冊二次函數(shù)與平行四邊形.doc_第2頁
數(shù)學(xué)人教版九年級上冊二次函數(shù)與平行四邊形.doc_第3頁
數(shù)學(xué)人教版九年級上冊二次函數(shù)與平行四邊形.doc_第4頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

專題:二次函數(shù)與平行四邊形教學(xué)目標(biāo):1. 學(xué)生經(jīng)歷課上對簡單動點問題的君朋講習(xí),理解特殊四邊形的性質(zhì)和判定,對簡單動點問題的解題方法有初步的理解;2. 經(jīng)歷較復(fù)雜背景下,動點問題的求解方法解題策略的歸納提升;3. 在自主解題、君朋講習(xí)和師生探究的學(xué)習(xí)過程中體會數(shù)形結(jié)合、分類討論、方程思想等主要數(shù)學(xué)思想方法在解題中的應(yīng)用,體會探索數(shù)學(xué)的樂趣。教學(xué)重點:經(jīng)歷應(yīng)用四邊形的性質(zhì)和判定定理解決二次函數(shù)與四邊形形狀問題教學(xué)難點:運用圖形的性質(zhì)和判定尋找運動中的特殊位置,利用方程思想解決問題教學(xué)過程:一、 教師導(dǎo)學(xué):教師將25題代幾綜合題的常見考點帶著學(xué)生梳理,提煉解題策略。本節(jié)課目標(biāo)導(dǎo)學(xué):點動、線動、面動構(gòu)成的問題稱為動態(tài)題近幾年來北京中考25題多是二次函數(shù)與幾何圖形相結(jié)合的代幾綜合題。(一)常見考點:(1)確定二次函數(shù)解析式(2)與動點有關(guān)的存在性問題(直角、等角、等腰三角形、直角三角形、等腰三角形全等三角形、相似三角形、特殊四邊形等)(3)函數(shù)類最值問題(4)運動問題中特殊位置的數(shù)量和位置關(guān)系(大膽猜想)本節(jié)課主要解決與動點有關(guān)的存在性問題的研究方法和策略(二)解題策略:動點(線、面)畫出符合條件的靜態(tài)圖形設(shè)出關(guān)鍵點坐標(biāo)由點坐標(biāo)表示線段長建立模型(方程)解方程求解符合條件的點坐標(biāo)驗證符合題意二、君朋講習(xí)問題串的(1)(3)背景問題:如圖,拋物線y=x2+bx+c與x軸交A(-1,0)、B(3,0)兩點,與y軸交于點C,頂點為D(1) 求拋物線的解析式;(2) 拋物線上有一動點M,在拋物線的對稱軸上是否存在一點N,使以A,B,M,N 為頂點的四邊形是平行四邊形,若存在直接寫出M點的坐標(biāo). 解:y=x2-2x-3 (2) M15,12, M2(-3,2), M3(1,-4) 說明:(1)(2) 學(xué)生基本能在學(xué)生層面解決,教師針對學(xué)生問題進行歸納提升,分類問題,分類的標(biāo)準(zhǔn),借助手中的尺子,動中取靜。(3)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一動點,過點P作PFDE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m求直線BC的解析式用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PEDF是平行四邊形?提示工具:平面內(nèi)任意兩點P(a,b),Q(c,d)的距離公式PQ=(a-c)2+(b-d)2說明:學(xué)生君朋講習(xí),體會解題策略,個別學(xué)生梳理,講解分析,教師歸納動點問題的研究策略:關(guān)鍵點坐標(biāo)線段長構(gòu)建方程解方程驗證 (學(xué)生完成板書)解答略三、一題多變,提升能力提升1:問在剛在的背景下,四邊形PEDF可能是菱形嗎?如果可能,求m的值;如果不可能,請說明理由。)分析:只需在是平行四邊形的條件下(即m=2時),驗證PE是否等于ED即可解:m=2時,P(2,-1),E(1,-2)PE=(2-1)2+(-1+2)2=22四邊形PEDF不是菱形。提升2:在剛剛(3)的背景下,PFDE的背景下,P的橫坐標(biāo)為m,如圖構(gòu)造矩形PRFS,設(shè)矩形PRFS的周長為P,矩形在線段CB上運動過程中,求P與m的函數(shù)關(guān)系式及P的最大值。學(xué)生自主完成,感受面動線動點動的轉(zhuǎn)化。設(shè)出關(guān)鍵點坐標(biāo),表示線段長,建立方程解決問題。在學(xué)生充分的自主分析基礎(chǔ)上,找同學(xué)到黑板上進行板書,教師點撥、提升。解:略(學(xué)生黑板板書,并講解,教師補充墻角解題策略)策略:畫出符合題意的圖形設(shè)出關(guān)鍵點坐標(biāo)表示線段長建立方程解決問課堂小結(jié):代題綜合題關(guān)鍵是要敢于動手畫出符合條件的靜態(tài)圖形設(shè)出關(guān)鍵點坐標(biāo)表示線段長利用相似、三角函數(shù)、勾股等建立方程求解驗證點坐標(biāo)檢測:1.在例題背景下,在拋物線上是否存在一點P使得四邊形ACBP是梯形,若存在寫出有幾個,并求出一象限內(nèi)的P的坐標(biāo)和此時梯形ACBP的面積。說明:學(xué)生自主完成,反饋檢測2.設(shè)ABC與ABC重合,將ABC沿x軸向右平移t個單位,設(shè)ABC與ABC重疊部分面積為S,求S與t的關(guān)系式。(0t4)分析:此題是面動問題轉(zhuǎn)化成點動問題,兩個三角形的重疊部分始終是ABG,很容易表示出AB=4-t,而高,可以利用ABGCCG對應(yīng)邊的比等于對應(yīng)高的比得到解答。進而求出S與t的關(guān)系式。幫助學(xué)生領(lǐng)會在坐標(biāo)系中求線段長的方法可以借助相似、解直、面積等關(guān)系求解。課后閱讀延伸:問在剛(3)的背景下,四邊形PEDF可能是等腰梯形嗎?如果可能,求m的值;如果不可能,請說明理由。(課下完成)分析:如果四邊形PEDF是等腰梯形,只需PE=FD,太復(fù)雜,即DG=EH,因此yF-yD=yE-yP是(m2-2m-3+4=-2-m-3解得m1=0與點C重合,舍去,m2=1(與點E重合,舍去)因此四邊形PEDF不可能是等腰梯形。作業(yè):1如圖,對稱軸為直線的拋物線經(jīng)過點A(6,0)和 B(0,4)(1)求拋物線解析式及頂點坐標(biāo);(2)設(shè)點E(,)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形求平行四邊形OEAF的面積S與之間的函數(shù)關(guān)系式,并寫出自

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論