



全文預覽已結(jié)束
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1.3.1函數(shù)的單調(diào)性一、教學目標1、知識與技能:(1)建立增(減)函數(shù)的概念通過觀察一些函數(shù)圖象的特征,形成增(減)函數(shù)的直觀認識.再通過具體函數(shù)值的大小比較,認識函數(shù)值隨自變量的增大(減?。┑囊?guī)律,由此得出增(減)函數(shù)單調(diào)性的定義 . 掌握用定義證明函數(shù)單調(diào)性的步驟。 (2)函數(shù)單調(diào)性的研究經(jīng)歷了從直觀到抽象,以圖識數(shù)的過程,在這個過程中,讓學生通過自主探究活動,體驗數(shù)學概念的形成過程的真諦。 2、過程與方法:(1)通過已學過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義;(2)學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)能夠熟練應用定義判斷與證明函數(shù)在某區(qū)間上的單調(diào)性3、情態(tài)與價值: 使學生感到學習函數(shù)單調(diào)性的必要性與重要性,增強學習函數(shù)的緊迫感.二、教學重難點1、教學重點:函數(shù)的單調(diào)性及其幾何意義2、教學難點:利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性 三、教學準備1、學法:從觀察具體函數(shù)圖象引入,直觀認識增減函數(shù),利用這定義證明函數(shù)單調(diào)性。通過練習、交流反饋,鞏固從而完成本節(jié)課的教學目標。2、教學用具:投影儀、計算機.四、教學過程:(一)創(chuàng)設情景,揭示課題1 觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應函數(shù)的哪些變化規(guī)律:yx1-11-1yx1-11-1yx1-11-1 隨x的增大,y的值有什么變化? 能否看出函數(shù)的最大、最小值? 函數(shù)圖象是否具有某種對稱性?2 畫出下列函數(shù)的圖象,觀察其變化規(guī)律: (1)f(x) = xyx1-11-1 從左至右圖象上升還是下降 _? 在區(qū)間 _ 上,隨著x的增大,f(x)的值隨著 _ (2)f(x) = x2 在區(qū)間 _ 上,f(x)的值隨著x的增大而 _ 在區(qū)間 _ 上,f(x)的值隨著x的增大而 _ 3、從上面的觀察分析,能得出什么結(jié)論?學生回答后教師歸納:從上面的觀察分析可以看出:不同的函數(shù),其圖象的變化趨勢不同,同一函數(shù)在不同區(qū)間上變化趨勢也不同,函數(shù)圖象的這種變化規(guī)律就是函數(shù)性質(zhì)的反映,這就是我們今天所要研究的函數(shù)的一個重要性質(zhì)函數(shù)的單調(diào)性(引出課題)。(二)研探新知1、y = x2的圖象在y軸右側(cè)是上升的,如何用數(shù)學符號語言來描述這種“上升”呢?學生通過觀察、思考、討論,歸納得出:函數(shù)y = x2在(0,+)上圖象是上升的,用函數(shù)解析式來描述就是:對于(0,+)上的任意的x1,x2,當x1x2時,都有x12x22 . 即函數(shù)值隨著自變量的增大而增大,具有這種性質(zhì)的函數(shù)叫增函數(shù)。2增函數(shù)一般地,設函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1x2時,都有f(x1)f(x2),那么就說f(x)在區(qū)間D上是增函數(shù)3、從函數(shù)圖象上可以看到,y= x2的圖象在y軸左側(cè)是下降的,類比增函數(shù)的定義,你能概括出減函數(shù)的定義嗎?注意: 函數(shù)的單調(diào)性是在定義域內(nèi)的某個區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì); 必須是對于區(qū)間D內(nèi)的任意兩個自變量x1,x2;當x1x2時,總有f(x1)f(x2) 4函數(shù)的單調(diào)性定義如果函數(shù)y=f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么就說函數(shù)y=f(x)在這一區(qū)間具有(嚴格的)單調(diào)性,區(qū)間D叫做y=f(x)的單調(diào)區(qū)間:(三)質(zhì)疑答辯,發(fā)展思維。根據(jù)函數(shù)圖象說明函數(shù)的單調(diào)性例1 如圖是定義在區(qū)間5,5上的函數(shù)y=f(x),根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,它是增函數(shù)還是減函數(shù)? 解:略例2 物理學中的玻意耳定律P=(k為正常數(shù))告訴我們,對于一定量的氣體,當其體積V減少時,壓強P將增大。試用函數(shù)的單調(diào)性證明之。分析:按題意,只要證明函數(shù)P=在區(qū)間(0,+)上是減函數(shù)即可。證明:略3判斷函數(shù)單調(diào)性的方法步驟 利用定義證明函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性的一般步驟: 任取x1,x2D,且x1x2; 作差f(x2)f(x1);變形(通常是因式分解和配方);定號(即判斷差f(x2)f(x1)的正負);下結(jié)論(即指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性)鞏固練習: 課本P38練習第1、2、3題; 證明函數(shù)在(1,+)上為增函數(shù)例3解:(略)思考:畫出反比例函數(shù)的圖象 這個函數(shù)的定義域是什么? 它在定義域I上的單調(diào)性怎樣?證明你的結(jié)論(四)歸納小結(jié)函數(shù)的單調(diào)性一般是先根據(jù)圖象判斷,再利用定義證明畫函數(shù)圖象通常借助計算機,求函數(shù)的單調(diào)區(qū)間時必須要注意函數(shù)的定義域,單調(diào)性的證明一般分五步:取 值 作 差 變 形 定 號 下結(jié)論(五)設置問題,留下懸念1、教師提出下列問題讓學生思考:通過增(減)函數(shù)概念的形成過程,你學習到了什么?增(減)函數(shù)的圖象有什么特點?如何根據(jù)圖象指出單調(diào)區(qū)間?怎樣用定義證明函數(shù)的單調(diào)性?師生共同就上述問題進行討論、交流,發(fā)表自己的意見。2、書面作業(yè):課本P3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《SPC應用技術》學習課件
- 財經(jīng)法規(guī)模擬考試題與答案(附解析)
- 2024年9月臨床醫(yī)學概論醫(yī)學檢驗技術練習題庫+參考答案解析
- 貨運火車站物流質(zhì)量管理與客戶滿意度調(diào)查考核試卷
- 環(huán)評工程課件
- 一級建筑師輔導課件-建筑工程設計
- 智能門禁系統(tǒng)安全性能考核試卷
- 環(huán)境工程導論課件
- 2025年農(nóng)產(chǎn)品加工專用設備項目合作計劃書
- 自然遺跡保護與野生動植物保護考核試卷
- 2024年自治區(qū)文化和旅游廳所屬事業(yè)單位招聘工作人員考試真題
- (二模)臨沂市2025年高三高考模擬考試歷史試題卷(含答案)
- 雇保姆看孩子合同協(xié)議
- 2025年小學語文教師實習工作總結(jié)模版
- 景區(qū)安全生產(chǎn)管理規(guī)章制度大全
- 消防司機交通安全課件
- 災害風險評估模型-第5篇-全面剖析
- 廣東2025年03月資本市場學院(廣東)招考工作人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025云南省安全員《A證》考試題庫及答案
- 腦出血手術護理查房
- 發(fā)電量管理考核辦法
評論
0/150
提交評論