![八年級(jí)全冊(cè)導(dǎo)學(xué)案.doc_第1頁](http://file.renrendoc.com/FileRoot1/2020-1/13/ba1745fc-5f8e-446c-8ffe-068c0184d2a0/ba1745fc-5f8e-446c-8ffe-068c0184d2a01.gif)
![八年級(jí)全冊(cè)導(dǎo)學(xué)案.doc_第2頁](http://file.renrendoc.com/FileRoot1/2020-1/13/ba1745fc-5f8e-446c-8ffe-068c0184d2a0/ba1745fc-5f8e-446c-8ffe-068c0184d2a02.gif)
![八年級(jí)全冊(cè)導(dǎo)學(xué)案.doc_第3頁](http://file.renrendoc.com/FileRoot1/2020-1/13/ba1745fc-5f8e-446c-8ffe-068c0184d2a0/ba1745fc-5f8e-446c-8ffe-068c0184d2a03.gif)
![八年級(jí)全冊(cè)導(dǎo)學(xué)案.doc_第4頁](http://file.renrendoc.com/FileRoot1/2020-1/13/ba1745fc-5f8e-446c-8ffe-068c0184d2a0/ba1745fc-5f8e-446c-8ffe-068c0184d2a04.gif)
![八年級(jí)全冊(cè)導(dǎo)學(xué)案.doc_第5頁](http://file.renrendoc.com/FileRoot1/2020-1/13/ba1745fc-5f8e-446c-8ffe-068c0184d2a0/ba1745fc-5f8e-446c-8ffe-068c0184d2a05.gif)
已閱讀5頁,還剩233頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
目 錄序號(hào)章 節(jié)起始頁碼1學(xué)習(xí)目標(biāo)2216.1二次根式5316.2二次根式的乘除15416.3二次根是的加減29517.1勾股定理37617.2勾股定理的逆定理53718.1平行四邊形63818.2特殊的平行四邊形89919.1函數(shù)1151019.2一次函數(shù)1431119.3課題學(xué)習(xí) 選擇方案1861220.1數(shù)據(jù)的集中趨勢(shì)1951320.2數(shù)據(jù)的波動(dòng)程度222備注學(xué)習(xí)目標(biāo)第十六 章二次根式備注1、了解二次根式、最簡(jiǎn)二次根式的概念,了解二次根式(根號(hào)下僅限于數(shù))加、減、乘、除運(yùn)算法則,會(huì)用它們進(jìn)行有關(guān)的簡(jiǎn)單四則運(yùn)算第十七章 勾股定理備注2、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問題。第十八章 平行四邊形備注3、理解平行四邊形、矩形、菱形、正方形的概念,以及它們之間的關(guān)系;了解四邊形的不穩(wěn)定性。4、探索并證明平行四邊形的性質(zhì)定理:平行四邊形的對(duì)邊相等、對(duì)角相等、對(duì)角線互相平分;探索并證明平行四邊形的判定定理:一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形。5、了解兩條平行線之間距離的意義,能度量?jī)蓷l平行線之間的距離。6、探索并證明矩形、菱形、正方形的性質(zhì)定理:矩形的四個(gè)角都是直角,對(duì)角線相等;菱形的四條邊相等,對(duì)角線互相垂直;以及它們的判定定理:三個(gè)角是直角的四邊形是矩形,對(duì)角線相等的平行四邊形是矩形;四邊相等的四邊形是菱形,對(duì)角線互相垂直的平行四邊形是菱形。正方形具有矩形和菱形的一切性質(zhì)7、探索并證明三角形的中位線定理。學(xué)習(xí)目標(biāo)第十九章 一次函數(shù)備注8、探索簡(jiǎn)單實(shí)例中的數(shù)量關(guān)系和變化規(guī)律,了解常量、變量的意義。9、結(jié)合實(shí)例,了解函數(shù)的概念和三種表示法,能舉出函數(shù)的實(shí)例。10、能結(jié)合圖像對(duì)簡(jiǎn)單實(shí)際問題中的函數(shù)關(guān)系進(jìn)行分析11、能確定簡(jiǎn)單實(shí)際問題中函數(shù)自變量的取值范圍,并會(huì)求出函數(shù)值。12、能用適當(dāng)?shù)暮瘮?shù)表示法刻畫簡(jiǎn)單實(shí)際問題中變量之間的關(guān)系13、結(jié)合對(duì)函數(shù)關(guān)系的分析,能對(duì)變量的變化情況進(jìn)行初步討論14、結(jié)合具體情境體會(huì)一次函數(shù)的意義,能根據(jù)已知條件確定一次函數(shù)的表達(dá)式15、會(huì)利用待定系數(shù)法確定一次函數(shù)的表達(dá)式。16、能畫出一次函數(shù)的圖像,根據(jù)一次函數(shù)的圖像和表達(dá)式 y = kx + b (k0)探索并理解k0和k0時(shí),圖像的變化情況。17、理解正比例函數(shù)。18、體會(huì)一次函數(shù)與二元一次方程的關(guān)系。19、能用一次函數(shù)解決簡(jiǎn)單實(shí)際問題。學(xué)習(xí)目標(biāo)第二十章 數(shù)據(jù)的分析備注20、經(jīng)歷收集、整理、描述和分析數(shù)據(jù)的活動(dòng),了解數(shù)據(jù)處理的過程;能用計(jì)算器處理較為復(fù)雜的數(shù)據(jù)。21、會(huì)制作扇形統(tǒng)計(jì)圖,能用統(tǒng)計(jì)圖直觀、有效地描述數(shù)據(jù)。22、理解平均數(shù)的意義,能計(jì)算中位數(shù)、眾數(shù)、加權(quán)平均數(shù),了解它們是數(shù)據(jù)集中趨勢(shì)的描述23、體會(huì)刻畫數(shù)據(jù)離散程度的意義,會(huì)計(jì)算簡(jiǎn)單數(shù)據(jù)的方差24、通過實(shí)例,了解頻數(shù)和頻數(shù)分布的意義,能畫頻數(shù)直方圖,能利用頻數(shù)直方圖解釋數(shù)據(jù)中蘊(yùn)涵的信息25、體會(huì)樣本與總體關(guān)系,知道可以通過樣本平均數(shù)、樣本方差推斷總體平均數(shù)、總體方差。16.1二次根式(一)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 1 )月( 27 )日 星期( 一 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1、理解二次根式的概念,并利用(a0)的意義解答具體題目2、提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實(shí)際問題學(xué)習(xí)重點(diǎn)形如(a0)的式子叫做二次根式的概念。學(xué)習(xí)難點(diǎn)利用“(a0)”解決具體問題。學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P 23 頁,思考下列問題:(1)理解二次根式的概念(2)找出二次根式有意義的條件(3)二次根式的雙重非負(fù)性是什么?2、獨(dú)立思考后我還有以下疑惑:(課前寫在小黑板上)二、答疑解惑我最棒(約8分鐘)甲:乙:丙:?。和榛ブ鹨山饣?6.1二次根式(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖三、合作學(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題(1)一個(gè)長(zhǎng)方形長(zhǎng)和寬分別為13cm和 5cm,則與它面積相等的正方形邊長(zhǎng)為_cm。(2)若正方形的面積3,則正方形的邊長(zhǎng)是_(3)圓形的面積為2,則半徑為 _.(4)h=5t2,則t=_(5)你認(rèn)為所得的各式有哪些共同點(diǎn)?答:表示一些正數(shù)的算術(shù)平方根(6)什么叫做平方根?如何表示?答:一般地,若一個(gè)數(shù)的平方等于a,則這個(gè)數(shù)就叫做a的平方根。根據(jù)定義可知 a的平方根是 a0(7)什么叫做一個(gè)數(shù)的算術(shù)平方根?如何表示?答: 表示為: (a0)(8)形如 (a0) 的式子叫做二次根式.(9)定義包含三個(gè)內(nèi)容:必需含有二次根號(hào) “ ”.16.1二次根式(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖被開方數(shù)a0. a可以是數(shù),也可以是含有字母的式子.四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):(1)二次根式的概念 形如 的式子叫做二次根式.(2)二次根式有意義的條件 (3)二次根式的性質(zhì): 2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)例1.下列式子中,是二次根式的有 _(填序號(hào))(1) (2)6 (3) (4)(m0) (5) (6) (7) 例2.當(dāng)x是怎樣的實(shí)數(shù)時(shí),下列式子在實(shí)數(shù)范圍內(nèi)有意義?二次根式中字母的取值范圍的基本依據(jù):(1)開方數(shù)不小于零;(2)分母中有字母時(shí),要保證分母不為零。練習(xí):課本P3 練習(xí) P5 復(fù)習(xí)鞏固 5,6,7、8五、課堂小測(cè)(約5分鐘)1、形如_ 的式子叫做二次根式16.1二次根式(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖2、面積為5的正方形的邊長(zhǎng)為_3、當(dāng)x是怎樣的實(shí)數(shù)時(shí),下列式子在實(shí)數(shù)范圍內(nèi)有意義?(1) (2) + 4、下列式子中,哪些是二次根式? - x 六、獨(dú)立作業(yè)我能行1.課本P5 習(xí)題16.1第 1 、3 2. 預(yù)習(xí)課本P3-5七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:2、掌握重點(diǎn)突破難點(diǎn)情況反思:3、錯(cuò)題記錄及原因分析:16.1二次根式(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )16.1二次根式(二)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 2 )月( 16 )日 星期( 日 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1.理解()2=a(a0),并利用它進(jìn)行計(jì)算和化簡(jiǎn)2.理解= 并利用它進(jìn)行計(jì)算和化簡(jiǎn)學(xué)習(xí)重點(diǎn)1.理解()2=a(a0),并利用它進(jìn)行計(jì)算和化簡(jiǎn)2.理解= 并利用它進(jìn)行計(jì)算和化簡(jiǎn)學(xué)習(xí)難點(diǎn)1.用探究的方法導(dǎo)出()2=a(a0)2.探究= 并利用這個(gè)結(jié)論解決具體問題學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P3 4 頁,思考下列問題:(1)二次根式的雙重非負(fù)性是什么?(2)理解 (3)理解(4)了解代數(shù)式的含義2、獨(dú)立思考后我還有以下疑惑:(寫在小組的小黑板上)二、答疑解惑我最棒(約8分鐘)甲:同伴互助答疑解惑16.1二次根式(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖二、答疑解惑我最棒(約8分鐘)乙:丙:?。和榛ブ鹨山饣笕⒑献鲗W(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題復(fù)習(xí)鞏固(1)什么是二次根式?(2)二次根式的雙重非負(fù)性是什么?x取何值時(shí),下列二次根式有意義?求二次根式中字母的取值范圍的基本依據(jù):(1)被開方數(shù)不小于零;(2)分母中有字母時(shí),要保證分母不為零。利用算術(shù)平方根的意義填空16.1二次根式(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖結(jié)論一: 利用算術(shù)平方根的意義填空利用算術(shù)平方根的意義填空結(jié)論二: (1)從運(yùn)算順序來看,(2)從取值范圍來看(3)從運(yùn)算結(jié)果來看四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):結(jié)論一: 結(jié)論二:代數(shù)式2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)例1:計(jì)算16.1二次根式(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖練習(xí)1:計(jì)算例2:化簡(jiǎn) 練習(xí)3:化簡(jiǎn)練習(xí)4:化簡(jiǎn)下列各式 練習(xí)5:課本P5頁第4、9、 10題五、課堂小測(cè)(約5分鐘)1、()2 = 2、(3)2 = 3、 =4、= 5、=16.1二次根式(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖六、獨(dú)立作業(yè)我能行1.課本P5 習(xí)題16.1第 2題 2. 預(yù)習(xí)課本P6-7七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:2、掌握重點(diǎn)突破難點(diǎn)情況反思:3、錯(cuò)題記錄及原因分析:自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )16.2二次根式的乘除(一)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 2 )月( 26 )日 星期( 三 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1、理解(a0,b0),=(a0,b0),并利用它們進(jìn)行計(jì)算和化簡(jiǎn);2、由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出(a0,b0)并運(yùn)用它進(jìn)行計(jì)算;3、利用逆向思維,得出=(a0,b0)并運(yùn)用它進(jìn)行解題和化簡(jiǎn)學(xué)習(xí)重點(diǎn)(a0,b0),=(a0,b0)及它們的運(yùn)用學(xué)習(xí)難點(diǎn)發(fā)現(xiàn)規(guī)律,導(dǎo)出(a0,b0)學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P 6 7頁,思考下列問題:(1)填寫“探究”內(nèi)容,總結(jié)二次根式的乘法法則(2)二次根式的乘法公式的逆運(yùn)用的作用是什么?(3)例2你有其他解法嗎?(4)完成P7練習(xí)1-32、獨(dú)立思考后我還有以下疑惑:(課前寫在小組的小黑板上)16.2二次根式的乘除(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖二、答疑解惑我最棒(約8分鐘)甲:乙:丙:?。和榛ブ鹨山饣笕⒑献鲗W(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題復(fù)習(xí)題問:(1)什么叫二次根式?(2)二次根式的兩個(gè)基本性質(zhì)是什么?計(jì)算下列各式, 觀察計(jì)算結(jié)果,你發(fā)現(xiàn)什么規(guī)律? 一般地,對(duì)于二次根式的乘法規(guī)定:四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):(1)二次根式的乘法法則:16.2二次根式的乘除(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖(2)反過來:(3)化簡(jiǎn)二次根式的步驟:把被開方數(shù)分解因式(或因數(shù)) ;把各因式(或因數(shù))積的算術(shù)平方根化為每個(gè)因式(或因數(shù))的算術(shù)平方根的積;如果因式中有平方式(或平方數(shù)),應(yīng)用關(guān)系式 (a0)把這個(gè)因式(或因數(shù))開出來,將二次根式化簡(jiǎn)2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練) 練習(xí)1: 例3:練習(xí)2化簡(jiǎn)練習(xí)3化簡(jiǎn)(1) (2)(2) (4)16.2二次根式的乘除(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖練習(xí)4:已知一個(gè)矩形的長(zhǎng)和寬分別是和求這個(gè)矩形的面積。五、課堂小測(cè)(約5分鐘)計(jì)算與化簡(jiǎn):(1)(2)(3)(4)(5)六、獨(dú)立作業(yè)我能行1、預(yù)習(xí)課本P8-10頁2、課本P10頁習(xí)題16.2第1、4、6、7題七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:2、掌握重點(diǎn)突破難點(diǎn)情況反思:16.2二次根式的乘除(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖3、錯(cuò)題記錄及原因分析:自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )16.2二次根式的乘除(二)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 2 )月( 26 )日 星期( 三 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1、理解=(a0,b0)和=(a0,b0)及利用它們進(jìn)行運(yùn)算2、利用具體數(shù)據(jù),通過學(xué)生練習(xí)活動(dòng),發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并用逆向思維寫出逆向等式及利用它們進(jìn)行計(jì)算和化簡(jiǎn)學(xué)習(xí)重點(diǎn)理解=(a0,b0),=(a0,b0)及利用它們進(jìn)行計(jì)算和化簡(jiǎn)學(xué)習(xí)難點(diǎn)發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P8 9頁,思考下列問題:(1)填寫“探究”內(nèi)容,總結(jié)二次根式的除法法則(2)二次根式的除法公式的逆運(yùn)用的作用是什么?(3)例6你有其他解法嗎?(4)完成P10練習(xí)1-32、獨(dú)立思考后我還有以下疑惑:(課前寫在小組的小黑板上)16.2二次根式的乘除(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖二、答疑解惑我最棒(約8分鐘)甲:乙:丙:?。和榛ブ鹨山饣笕?、合作學(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題復(fù)習(xí)題問:(1)什么是二次根式?(2)二次根式的兩個(gè)性質(zhì)是什么?(3)二次根式的乘法法則及逆運(yùn)算公式是什么?合作學(xué)習(xí)1二次根式的除法有沒有類似的法則呢? 2規(guī)律:16.2二次根式的乘除(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖兩個(gè)二次根式相除,等于把被開方數(shù)相除,作為商的被開方數(shù)反之也成立四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):(1)兩個(gè)二次根式相除,等于把被開方數(shù)相除,作為商的被開方數(shù)(2)除法法則逆應(yīng)用:(3)把分母中的根號(hào)化去,使分母變成有理數(shù),這個(gè)過程叫做分母有理化。(4)在二次根式的運(yùn)算中, 最后結(jié)果一般要求分母中不含有二次根式.最后結(jié)果中的二次根式要求寫成最簡(jiǎn)的二次根式的形式.2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)例4:計(jì)算:練習(xí)1:16.2二次根式的乘除(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖例5 化簡(jiǎn):練習(xí)2:化簡(jiǎn)例6計(jì)算五、課堂小測(cè)(約5分鐘)(1) (2) (3) (4) (5) 六、獨(dú)立作業(yè)我能行1、預(yù)習(xí)課本P9-10頁2、課本P10頁習(xí)題16.2第2、4、5題16.2二次根式的乘除(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:2、掌握重點(diǎn)突破難點(diǎn)情況反思:3、錯(cuò)題記錄及原因分析:自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )16.2二次根式的乘除(三)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 2 )月( 26 )日 星期( 三 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1、理解最簡(jiǎn)二次根式的概念,并運(yùn)用它把不是最簡(jiǎn)二次根式的化成最簡(jiǎn)二次根式2、通過計(jì)算或化簡(jiǎn)的結(jié)果來提煉出最簡(jiǎn)二次根式的概念,并根據(jù)它的特點(diǎn)來檢驗(yàn)最后結(jié)果是否滿足最簡(jiǎn)二次根式的要求學(xué)習(xí)重點(diǎn)最簡(jiǎn)二次根式的運(yùn)用學(xué)習(xí)難點(diǎn)會(huì)判斷這個(gè)二次根式是否是最簡(jiǎn)二次根式學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P9 10 頁,思考下列問題:(1)二次根式乘除法的法則分別是什么?(2)二次根式計(jì)算的結(jié)果必須是什么根式?(3)什么最簡(jiǎn)二次根式?2、獨(dú)立思考后我還有以下疑惑:(課前寫在小組的小黑板上)二、答疑解惑我最棒(約8分鐘)甲:乙:丙:?。和榛ブ鹨山饣?6.2二次根式的乘除(三)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖三、合作學(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題什么是最簡(jiǎn)二次根式?(1)被開方數(shù)不含分母(2)被開方數(shù)不含能開得盡方的因數(shù)或因式四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):什么是最簡(jiǎn)二次根式?(1)被開方數(shù)不含分母(2)被開方數(shù)不含能開得盡方的因數(shù)或因式2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)例7 設(shè)長(zhǎng)方形的面積為S,相鄰兩邊長(zhǎng)分別是a、b。已知S= b= ,求a解:例8 化簡(jiǎn) 解:練習(xí)1:課本P10頁練習(xí)題全做課本P10-11頁習(xí)題16.2第9、10、11、12題16.2二次根式的乘除(三)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖練習(xí)2:把下列各式化簡(jiǎn)(分母有理化):五、課堂小測(cè)(約5分鐘)(1) (2) (3) 六、獨(dú)立作業(yè)我能行1、預(yù)習(xí)課本P12-13頁2、課本16.2第8題七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:2、掌握重點(diǎn)突破難點(diǎn)情況反思:3、錯(cuò)題記錄及原因分析:16.2二次根式的乘除(三)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )16.3二次根式的加減(一)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 3 )月( 2 )日 星期( 日 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1、理解和掌握二次根式加減的方法2、先提出問題,分析問題,在分析問題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解再總結(jié)經(jīng)驗(yàn),用它來指導(dǎo)二次根式的計(jì)算和化簡(jiǎn)3、運(yùn)用二次根式、化簡(jiǎn)解決問題學(xué)習(xí)重點(diǎn)把二次根式化簡(jiǎn)為最簡(jiǎn)根式,合并同類二次根式學(xué)習(xí)難點(diǎn)會(huì)判定是否是最簡(jiǎn)二次根式學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P 1213 頁,思考下列問題:(1)分析P12頁問題,理解二次根式加減的方法。(2)進(jìn)行二次根式加減時(shí)先做什么?再做什么?(3)你能獨(dú)立解答P13頁例1、例2嗎?2、獨(dú)立思考后我還有以下疑惑:(課前寫在小組的小黑板上)二、答疑解惑我最棒(約8分鐘)甲:乙:丙:丁:同伴互助答疑解惑16.3二次根式的加減(一) 導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖三、合作學(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題復(fù)習(xí)回顧:(1)什么是最簡(jiǎn)二次根式?(2)化簡(jiǎn)二次根式并找出同類二次根式(3)合并同類二次根式與合并同類項(xiàng)有什么聯(lián)系四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):(一化、二找、三合并)二次根式加減運(yùn)算的步驟:(1)把各個(gè)二次根式化成最簡(jiǎn)二次根式(2)把各個(gè)同類二次根式合并.注意:不是同類二次根式的二次根式(如 與 )不能合并2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)(1)問題:現(xiàn)有一塊長(zhǎng)7.5dm、寬5dm的木板,能否采用如圖的方式,在這塊木板上截出兩個(gè)分別是8dm2和18dm2的正方形木板?16.3二次根式的加減(一) 導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖在這塊木板上可以截出兩個(gè)分別是8dm2和18dm2的正方形木板 解:先化簡(jiǎn),后合并練習(xí)1:練習(xí)2、課本P13頁練習(xí)1-3題練習(xí)3、課本P15頁習(xí)題16.3第1題五、課堂小測(cè)(約5分鐘) (1)2+316.3二次根式的加減(一) 導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖(2)2-3+5 (3)+2+3 (4)3-2+ (5)3-9+3六、獨(dú)立作業(yè)我能行1、預(yù)習(xí)課本P14頁例3、例4七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:2、掌握重點(diǎn)突破難點(diǎn)情況反思:3、錯(cuò)題記錄及原因分析:自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )16.3二次根式的加減(二)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 3 )月( 2 )日 星期( 日 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1、掌握二次根式混合運(yùn)算的方法2、掌握二次根式的多項(xiàng)式乘法公式的應(yīng)用3、復(fù)習(xí)整式運(yùn)算知識(shí)并將該知識(shí)運(yùn)用于含有二次根式的式子的運(yùn)算學(xué)習(xí)重點(diǎn)二次根式的混合運(yùn)算規(guī)律;學(xué)習(xí)難點(diǎn)由整式運(yùn)算知識(shí)遷移到含二次根式的運(yùn)算學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P 14 頁,思考下列問題:(1)回顧整式的運(yùn)算規(guī)律及乘法公式(2)由例3、例4理解二次根式混合運(yùn)算的規(guī)律(3)由整式運(yùn)算知識(shí)遷移到含二次根式的運(yùn)算2、獨(dú)立思考后我還有以下疑惑:(課前寫在小組的小黑板上)二、答疑解惑我最棒(約8分鐘)甲:乙:丙:丁:同伴互助答疑解惑16.3二次根式的加減(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖三、合作學(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題(1)要進(jìn)行二次根式加減運(yùn)算,它們具備什么特征才能進(jìn)行合并?(2)說出 的三個(gè)同類二次根式?(3)下列各式中哪些是同類二次根式?(4)下列計(jì)算哪些正確,哪些不正確 ( ) ( ) ( ) ( ) ( )(4) 如何進(jìn)行單項(xiàng)式與多項(xiàng)式相乘的 運(yùn)算?多項(xiàng)式除以單項(xiàng)式呢?你能用字母表示這一結(jié)論嗎?m(a+bc)= ma+mbmc四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):16.3二次根式的加減(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)例3:練習(xí)1:例5: (2)(3)練習(xí)2:(3) (4)練習(xí)3:課本P15頁習(xí)題16.3第5、6、7、8、9題五、課堂小測(cè)(約5分鐘)(1)(+) (2)(4-3)2(3)(+6)(3-) (4)(+)(-)六、獨(dú)立作業(yè)我能行1、復(fù)習(xí)小結(jié)第十六章二次根式的內(nèi)容,寫在工具單本上。2、課本P14頁練習(xí)3、課本P15頁習(xí)題16.3第4題七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:16.3二次根式的加減(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖2、掌握重點(diǎn)突破難點(diǎn)情況反思:3、錯(cuò)題記錄及原因分析:自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )17.1勾股定理(一)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 3 )月( 11 )日 星期( 二 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1.了解勾股定理的歷史背景,體會(huì)勾股定理的探索過程.2.掌握直角三角形中的三邊關(guān)系和三角之間的關(guān)系。3.在勾股定理的探索過程中,發(fā)展合理推理能力.體會(huì)數(shù)形結(jié)合的思想.4.通過探究勾股定理(正方形方格中)的過程,體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。5.在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過程和探究的結(jié)果。6.學(xué)生通過適當(dāng)訓(xùn)練,養(yǎng)成數(shù)學(xué)說理的習(xí)慣,培養(yǎng)學(xué)生參與的積極性,逐步體驗(yàn)數(shù)學(xué)說理的重要性。7.在探究活動(dòng)中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探究精神。學(xué)習(xí)重點(diǎn)探索和證明勾股定理。學(xué)習(xí)難點(diǎn)1.應(yīng)用勾股定理時(shí)斜邊的平方等于兩直角邊的平方和。2.靈活運(yùn)用勾股定理。學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)閱讀課本P22-24頁,了解下列問題 1、什么是勾股定理? 2、勾股定理的文字?jǐn)⑹雠c幾何語言如何表達(dá)? 17.1勾股定理(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖3、畢達(dá)哥拉斯怎么研究的勾股定理? 4、趙爽弦圖什么意思?獨(dú)立思考后我還有以下疑惑:(課前寫在小組的小黑板上)二、答疑解惑我最棒(約8分鐘)甲:乙:丙:?。和榛ブ鹨山饣笕⒑献鲗W(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題關(guān)于直角三角形,你知道哪些方面的知識(shí)?(1)直角三角形叫Rt(2)兩銳角互余A+B=90 (3)三角形的面積s=ab=hc (4)30所對(duì)的直角邊等于斜邊的一半(5)證明兩個(gè)直角三角形全等有“HL” 畢達(dá)哥拉斯是古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家,相傳2500年前,一次,畢達(dá)哥拉斯去朋友家作客.在宴席上,其他的賓客都在盡情歡樂,高談闊論,只有畢達(dá)哥拉斯17.1勾股定理(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖卻看著朋友家的方磚地而發(fā)起呆來原來,朋友家的地是用一塊塊直角三角形形狀的磚鋪成的,黑白相間,非常美觀大方主人看到畢達(dá)哥拉斯的樣子非常奇怪,就想過去問他誰知畢達(dá)哥拉斯突破恍然大悟的樣子,站起來,大笑著跑回家去了同學(xué)們,你想知道大哲學(xué)家發(fā)現(xiàn)了什么嗎?(見課件)問題:大正方形的面積與兩個(gè)小正方形的面積有什么關(guān)系?17.1勾股定理(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖在約公元前1100年,我國(guó)古算書周髀b算經(jīng)記載,人們已經(jīng)知道,如果勾是三,股是四,那么弦是五.在我國(guó)古代,人們將直角三角形中的 短的直角邊叫做勾 長(zhǎng)的直角邊叫做股斜邊叫做弦四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):(1)經(jīng)過證明被確認(rèn)正確的命題叫做定理(2)勾股定理:如果直角三角形兩直角邊分別 為a、b,斜邊為c,那么即 直角三角形兩直角邊 的平方和等于斜邊的平方。2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)已知, RtABC 中,a,b為的兩條直角邊,c為斜邊,求:已知: a3, b4,求c 已知: c 10,a6,求b課本P24頁練習(xí)課本P28頁習(xí)題17.1第1題17.1勾股定理(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖五、課堂小測(cè)(約5分鐘)1RtDABC的兩條直角邊a=3, b=4,則斜邊c= .2已知:如圖在ABC中,ACB=90,以ABC的各邊為在ABC外作三個(gè)正方形分別表示這三個(gè)正方形的面積, 則的邊長(zhǎng)為( ) A.6 B.36 C.64 D.83 若直角三角形兩直角邊分別為12,16,則此直角三角形的周長(zhǎng)為( )A.28 B.36 C.32 D.484 直角三角形的三邊長(zhǎng)分別為3,4,x,則x2等于( )A.5 B.25 C.7 D.25或7六、獨(dú)立作業(yè)我能行1、預(yù)習(xí)課本P25-26頁,思考預(yù)習(xí)提綱2、練習(xí)冊(cè)P14-15頁預(yù)習(xí)+應(yīng)用七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:17.1勾股定理(一)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖2、掌握重點(diǎn)突破難點(diǎn)情況反思:3、錯(cuò)題記錄及原因分析:自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )17.1勾股定理(二)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 3 )月( 12 )日 星期( 三 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1、會(huì)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算及應(yīng)用。2、經(jīng)歷探究勾股定理的計(jì)算過程,進(jìn)一步鞏固勾股定理,學(xué)會(huì)利用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算的方法。3、樹立數(shù)形結(jié)合的思想、分類討論思想。學(xué)習(xí)重點(diǎn)勾股定理的簡(jiǎn)單計(jì)算及應(yīng)用。學(xué)習(xí)難點(diǎn)勾股定理的靈活運(yùn)用。學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P25 26 頁,思考下列問題:(1)鞏固勾股定理 (2)例1、例2你能獨(dú)立解答嗎? (3)P26頁練習(xí)題你能獨(dú)立解答嗎?2、獨(dú)立思考后我還有以下疑惑:(課前寫在小組的小黑板上)二、答疑解惑我最棒(約8分鐘)甲:乙:丙:?。和榛ブ鹨山饣?7.1勾股定理(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖三、合作學(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題(1)勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方如果在Rt ABC中,C=90,那么(2)如圖,分別以Rt ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1、S2、S3表示,容易得出S1、S2、S3之間有的關(guān)系式為 (3)在長(zhǎng)方形ABCD中,寬AB為1m,長(zhǎng)BC為2m ,求AC長(zhǎng)17.1勾股定理(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)例1:一個(gè)門框尺寸如下圖所示若有一塊長(zhǎng)3米,寬0.8米的薄木板,問怎樣從門框通過?若薄木板長(zhǎng)3米,寬1.5米呢?若薄木板長(zhǎng)3米,寬2.2米呢?為什么?木板的寬2.2米大于1米, 橫著不能從門框通過;木板的寬2.2米大于2米,豎著也不能從門框通過 只能試試斜著能否通過,對(duì)角線AC的長(zhǎng)最大,因此需要求出AC的長(zhǎng),怎樣求呢?例2:一個(gè)2.5m長(zhǎng)的梯子AB斜靠在一豎直的墻AC上,這時(shí)AC的距離為2.4m如果梯子頂端A沿墻下滑0.4m,那么梯子底端B也外移0.4m嗎? 解:在RtABC中, ACB=90 AC2+ BC2AB2 2.42+ BC22.52 BC0.7m 由題意得:DEAB2.5m DCACAD2.40.42m在RtDCE中,DCE=90 DC2+ CE2DE222+ BC22.52 CE1.5mBE1.50.70.8m0.4m答;梯子底端B不是外移0.4m17.1勾股定理(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖P29頁第10題:在我國(guó)古代數(shù)學(xué)著作九章算術(shù)中記載了一道有趣的問題這個(gè)問題意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,問這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少?解:設(shè)水池的深度AC為X米,則蘆葦高AD為 (X+1)米.根據(jù)題意得:BC2+AC2=AB252+X2 =(X+1)225+X2=X2+2X+1X=12 X+1=12+1=13(米)答:水池的深度為12米,蘆葦高為13米.P26頁第1題,如圖,池塘邊有兩點(diǎn)A、B,點(diǎn)C是與BA方向成直角的AC方向上的一點(diǎn),測(cè)得CB= 60m,AC= 20m ,你能求出A、B兩點(diǎn)間的距離嗎? (結(jié)果保留整數(shù))17.1勾股定理(二)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖五、課堂小測(cè)(約5分鐘)課本P26頁第2題六、獨(dú)立作業(yè)我能行1、預(yù)習(xí)課本P26-27頁,思考預(yù)習(xí)提綱2、課本P28習(xí)題17.1第2、3、4、5題七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:2、掌握重點(diǎn)突破難點(diǎn)情況反思:3、錯(cuò)題記錄及原因分析:自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )17.1勾股定理(三)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1.會(huì)用勾股定理解決簡(jiǎn)單的實(shí)際問題。2.會(huì)用勾股定理解決較綜合的問題。3.經(jīng)歷探究與勾股定理有關(guān)的實(shí)際問題,學(xué)會(huì)利用勾股定理解決實(shí)際問題的方法.4.樹立數(shù)形結(jié)合的思想。學(xué)習(xí)重點(diǎn)勾股定理的應(yīng)用。學(xué)習(xí)難點(diǎn)實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化。學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P26-27頁 (1)理解用勾股定理證明“斜邊、直角邊”定理 (2)在練習(xí)本上劃一條數(shù)軸,并在數(shù)軸上找到表示的點(diǎn)(3)獨(dú)立思考后我還有以下疑惑:(課前寫在小組的小黑板上)二、答疑解惑我最棒(約8分鐘)甲:乙:丙:?。和榛ブ鹨山饣?7.1勾股定理(三)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖三、合作學(xué)習(xí)探索新知(約15分鐘)1、小組合作分析問題2、小組合作答疑解惑3、師生合作解決問題用勾股定理證明“斜邊、直角邊”定理已知:如圖,Rt ABC和Rt ABC中, c= c=900,AB=AB,AC=AC。 求證: ABC ABC證明:請(qǐng)你在作業(yè)紙上畫圖,在數(shù)軸上表示 的點(diǎn)請(qǐng)同學(xué)們歸納出如何在數(shù)軸上畫出表示 的點(diǎn)的方法?你能在數(shù)軸上表示 的點(diǎn)嗎?試一試!17.1勾股定理(三)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖四、歸納總結(jié)鞏固新知(約15分鐘)1、知識(shí)點(diǎn)的歸納總結(jié):在數(shù)軸上找到點(diǎn)A,使OA=3,過A點(diǎn)作直線L垂直于OA,在L上截取AB=2,以O(shè)為圓心,以O(shè)B為半徑畫弧,交數(shù)軸于點(diǎn)C,點(diǎn)C即為表示 的點(diǎn)2、運(yùn)用新知解決問題:(重點(diǎn)例習(xí)題的強(qiáng)化訓(xùn)練)課本P28-29頁第11-14題五、課堂小測(cè)(約5分鐘)1、已知等腰三角形的一條腰長(zhǎng)是5,底邊長(zhǎng)是6,則它底邊上的高為 2、長(zhǎng)為 的線段是直角邊長(zhǎng)為正整數(shù) , 的直角三角形的斜邊. 3、如圖所示,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,則在網(wǎng)格上的三角形ABC中,邊長(zhǎng)為無理數(shù)的邊數(shù)為( ) 17.1勾股定理(三)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖A.0 B.1 C.2 D.34、已知如圖所示,等邊三角形ABC的邊長(zhǎng)為6:(1)求高AD的長(zhǎng)(2)求這個(gè)三角形的面積(答案可保留根號(hào))六、獨(dú)立作業(yè)我能行1、預(yù)習(xí)課本P31-33頁2、課本P28-29頁第7、8、9題七、課后反思:1、學(xué)習(xí)目標(biāo)完成情況反思:2、掌握重點(diǎn)突破難點(diǎn)情況反思:17.1勾股定理(三)導(dǎo)學(xué)案學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖3、錯(cuò)題記錄及原因分析:自我評(píng)價(jià)課上1、本節(jié)課我對(duì)自己最滿意的一件事是:2、本節(jié)課我對(duì)自己最不滿意的一件事是:作業(yè)獨(dú)立完成( ) 求助后獨(dú)立完成( )未及時(shí)完成( ) 未完成( )17.2勾股定理的逆定理(一)導(dǎo)學(xué)案?jìng)湔n時(shí)間2014年( 3 )月( 17 )日 星期( 一 )學(xué)習(xí)時(shí)間2014年( )月( )日 星期( )學(xué)習(xí)目標(biāo)1.體會(huì)勾股定理的逆定理得出過程,掌握勾股定理的逆定理。2.探究勾股定理的逆定理的證明方法。3.理解原命題、逆命題、逆定理的概念及關(guān)系。4.經(jīng)歷直角三角形判別條件的探究過程,體會(huì)命題、定理的互逆性,掌握可逆性的數(shù)學(xué)意識(shí)5.培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值學(xué)習(xí)重點(diǎn)掌握勾股定理的逆定理及證明。學(xué)習(xí)難點(diǎn)勾股定理的逆定理的證明。學(xué)具使用多媒體課件、小黑板、彩粉筆、三角板等學(xué)習(xí)內(nèi)容學(xué)習(xí)活動(dòng)設(shè)計(jì)意圖一、創(chuàng)設(shè)情境獨(dú)立思考(課前20分鐘)1、閱讀課本P31 33 頁,思考下列問題:(1)體會(huì)勾股定理的逆定理得出過程,掌握勾股定理的逆定理。(2)探究勾股定理的逆定理的證明方法。(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 供熱合同范例封皮
- 2025年垃圾發(fā)電機(jī)項(xiàng)目可行性研究報(bào)告
- 豫劇樂隊(duì)伴奏十字訣
- 分期付合同范例
- 刷白合同范本
- 公司車輛洗車合同范本
- 代理辦理抵押合同范本
- 2025年白影貼面板項(xiàng)目投資可行性研究分析報(bào)告
- 農(nóng)村黏土開采合同范本
- 蘇州個(gè)人房東房屋租賃合同
- 防洪防汛安全知識(shí)教育課件
- 一年級(jí)科學(xué)石頭
- 部編人教版八年級(jí)語文下冊(cè)全冊(cè)課件
- 新起點(diǎn)英語二年級(jí)下冊(cè)全冊(cè)教案
- 《紅星照耀中國(guó)》整本書閱讀教學(xué)設(shè)計(jì)-統(tǒng)編版語文八年級(jí)上冊(cè)
- 【幼兒園戶外體育活動(dòng)材料投放的現(xiàn)狀調(diào)查報(bào)告(定量論文)8700字】
- 帶狀皰疹與帶狀皰疹后遺神經(jīng)痛(HZ與PHN)
- JC-T 746-2023 混凝土瓦標(biāo)準(zhǔn)規(guī)范
- 漢密爾頓抑郁和焦慮量表
- 前列腺癌的診斷與治療
- 人教版八年級(jí)數(shù)學(xué)初中數(shù)學(xué)《平行四邊形》單元教材教學(xué)分析
評(píng)論
0/150
提交評(píng)論