已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
最短路徑算法Dijkstra(迪杰斯特拉)算法分析與實(shí)現(xiàn)(C/C+) 接上一篇:最短路徑算法Bellman-Ford(貝爾曼-福特)算法分析與實(shí)現(xiàn)(C/C+) Dijkstra(迪杰斯特拉)算法是典型的最短路徑路由算法,用于計(jì)算一個(gè)節(jié)點(diǎn)到其他所有節(jié)點(diǎn)的最短路徑。主要特點(diǎn)是以起始點(diǎn)為中心向外層層擴(kuò)展,直到擴(kuò)展到終點(diǎn)為止。Dijkstra算法能得出最短路徑的最優(yōu)解,但由于它遍歷計(jì)算的節(jié)點(diǎn)很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多專業(yè)課程中都作為基本內(nèi)容有詳細(xì)的介紹,如數(shù)據(jù)結(jié)構(gòu),圖論,運(yùn)籌學(xué)等等。其基本思想是,設(shè)置頂點(diǎn)集合S并不斷地作貪心選擇來擴(kuò)充這個(gè)集合。一個(gè)頂點(diǎn)屬于集合S當(dāng)且僅當(dāng)從源到該頂點(diǎn)的最短路徑長度已知。初始時(shí),S中僅含有源。設(shè)u是G的某一個(gè)頂點(diǎn),把從源到u且中間只經(jīng)過S中頂點(diǎn)的路稱為從源到u的特殊路徑,并用數(shù)組dist記錄當(dāng)前每個(gè)頂點(diǎn)所對應(yīng)的最短特殊路徑長度。Dijkstra算法每次從V-S中取出具有最短特殊路長度的頂點(diǎn)u,將u添加到S中,同時(shí)對數(shù)組dist作必要的修改。一旦S包含了所有V中頂點(diǎn),dist就記錄了從源到所有其它頂點(diǎn)之間的最短路徑長度。例如,對下圖中的有向圖,應(yīng)用Dijkstra算法計(jì)算從源頂點(diǎn)1到其它頂點(diǎn)間最短路徑的過程列在下表中。Dijkstra算法的迭代過程:主題好好理解上圖!以下是具體的實(shí)現(xiàn)(C/C+):/* About: 有向圖的Dijkstra算法實(shí)現(xiàn)* Author: Tanky Woo* Blog: www.WuTianQ*/#include using namespace std;const int maxnum = 100;const int maxint = 999999;void Dijkstra(int n, int v, int *dist, int *prev, int cmaxnummaxnum)bool smaxnum; / 判斷是否已存入該點(diǎn)到S集合中for(int i=1; i=n; +i)disti = cvi;si = 0; / 初始都未用過該點(diǎn)if(disti = maxint)previ = 0;elseprevi = v;distv = 0;sv = 1;/ 依次將未放入S集合的結(jié)點(diǎn)中,取dist最小值的結(jié)點(diǎn),放入結(jié)合S中/ 一旦S包含了所有V中頂點(diǎn),dist就記錄了從源點(diǎn)到所有其他頂點(diǎn)之間的最短路徑長度for(int i=2; i=n; +i)int tmp = maxint;int u = v;/ 找出當(dāng)前未使用的點(diǎn)j的distj最小值for(int j=1; j=n; +j)if(!sj) & distjtmp)u = j; / u保存當(dāng)前鄰接點(diǎn)中距離最小的點(diǎn)的號碼tmp = distj;su = 1; / 表示u點(diǎn)已存入S集合中/ 更新distfor(int j=1; j=n; +j)if(!sj) & cujmaxint)int newdist = distu + cuj;if(newdist =1; -i)if(i != 1)cout quei ;elsecout quei n;/ 輸入路徑數(shù)cin line;int p, q, len; / 輸入p, q兩點(diǎn)及其路徑長度/ 初始化c為maxintfor(int i=1; i=n; +i)for(int j=1; j=n; +j)cij = maxint;for(int i=1; i p q len;if(len cpq) / 有重邊cpq = len; / p指向qcqp = len; / q指向p,這樣表示無向圖for(int i=1; i=n; +i)disti = maxint;for(int i=1; i=n; +i)for(int j=1; j=n; +j)printf(%8d, cij);printf(n);Dijks
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘭州信息科技學(xué)院《親子教育活動設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西農(nóng)業(yè)大學(xué)南昌商學(xué)院《稅收》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南藝術(shù)職業(yè)學(xué)院《誤差理論與測繪平差基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 衡水學(xué)院《有機(jī)化學(xué)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶交通大學(xué)《元典閱讀與筆記2》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江商業(yè)職業(yè)技術(shù)學(xué)院《形體與舞蹈(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國戲曲學(xué)院《小企業(yè)會計(jì)準(zhǔn)則》2023-2024學(xué)年第一學(xué)期期末試卷
- 長春汽車工業(yè)高等??茖W(xué)校《自然地理學(xué)理論與方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江紡織服裝職業(yè)技術(shù)學(xué)院《數(shù)據(jù)分析與SPSS實(shí)現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 食品衛(wèi)生安全監(jiān)管技術(shù)應(yīng)用
- 2025年山東光明電力服務(wù)公司招聘筆試參考題庫含答案解析
- 《神經(jīng)發(fā)展障礙 兒童社交溝通障礙康復(fù)規(guī)范》
- 2025年中建六局二級子企業(yè)總經(jīng)理崗位公開招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年5月江蘇省事業(yè)單位招聘考試【綜合知識與能力素質(zhì)】真題及答案解析(管理類和其他類)
- 注漿工安全技術(shù)措施
- 2024年世界職業(yè)院校技能大賽“食品安全與質(zhì)量檢測組”參考試題庫(含答案)
- 2023上海高考英語詞匯手冊單詞背誦默寫表格(復(fù)習(xí)必背)
- 人民軍隊(duì)歷史與優(yōu)良傳統(tǒng)(2024)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- DB11T 641-2018 住宅工程質(zhì)量保修規(guī)程
- 幼兒園幼兒營養(yǎng)食譜手冊
- 2024宏泰集團(tuán)所屬湖北省征信限公司招聘9人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
評論
0/150
提交評論