




已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
章末總結(jié)知識點(diǎn)一圓錐曲線的定義和性質(zhì)對于圓錐曲線的有關(guān)問題,要有運(yùn)用圓錐曲線定義解題的意識,“回歸定義”是一種重要的解題策略;應(yīng)用圓錐曲線的性質(zhì)時,要注意與數(shù)形結(jié)合思想、方程思想結(jié)合起來總之,圓錐曲線的定義、性質(zhì)在解題中有重要作用,要注意靈活運(yùn)用例1已知雙曲線的焦點(diǎn)在x軸上,離心率為2,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),P為雙曲線上一點(diǎn),且F1PF260,SPF1F212,求雙曲線的標(biāo)準(zhǔn)方程知識點(diǎn)二直線與圓錐曲線的位置關(guān)系直線與圓錐曲線一般有三種位置關(guān)系:相交、相切、相離在直線與雙曲線、拋物線的位置關(guān)系中有一種情況,即直線與其交于一點(diǎn)和切于一點(diǎn),二者在幾何意義上是截然不同的,反映在代數(shù)方程上也是完全不同的,這在解題中既是一個難點(diǎn)也是一個十分容易被忽視的地方圓錐曲線的切線是圓錐曲線的割線與圓錐曲線的兩個交點(diǎn)無限靠近時的極限情況,反映在消元后的方程上,就是一元二次方程有兩個相等的實(shí)數(shù)根,即判別式等于零;而與圓錐曲線有一個交點(diǎn)的直線,是一種特殊的情況(拋物線中與對稱軸平行,雙曲線中與漸近線平行),反映在消元后的方程上,該方程是一次的例2如圖所示,O為坐標(biāo)原點(diǎn),過點(diǎn)P(2,0)且斜率為k的直線l交拋物線y22x于M(x1,y1),N(x2,y2)兩點(diǎn)(1)求x1x2與y1y2的值;(2)求證:OMON.知識點(diǎn)三軌跡問題軌跡是解析幾何的基本問題,求解的方法有以下幾種:(1)直接法:建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)動點(diǎn)為(x,y),根據(jù)幾何條件直接尋求x、y之間的關(guān)系式(2)代入法:利用所求曲線上的動點(diǎn)與某一已知曲線上的動點(diǎn)的關(guān)系,把所求動點(diǎn)轉(zhuǎn)換為已知動點(diǎn)具體地說,就是用所求動點(diǎn)的坐標(biāo)x、y來表示已知動點(diǎn)的坐標(biāo)并代入已知動點(diǎn)滿足的曲線的方程,由此即可求得所求動點(diǎn)坐標(biāo)x、y之間的關(guān)系式(3)定義法:如果所給幾何條件正好符合圓、橢圓、雙曲線、拋物線等曲線的定義,則可直接利用這些已知曲線的方程寫出動點(diǎn)的軌跡方程(4)參數(shù)法:當(dāng)很難找到形成曲線的動點(diǎn)P(x,y)的坐標(biāo)x,y所滿足的關(guān)系式時,借助第三個變量t,建立t和x,t和y的關(guān)系式x(t),y(t),再通過一些條件消掉t就間接地找到了x和y所滿足的方程,從而求出動點(diǎn)P(x,y)所形成的曲線的普通方程例3設(shè)點(diǎn)A、B是拋物線y24px (p0)上除原點(diǎn)O以外的兩個動點(diǎn),已知OAOB,OMAB,垂足為M,求點(diǎn)M的軌跡方程,并說明它表示什么曲線?知識點(diǎn)四圓錐曲線中的定點(diǎn)、定值問題圓錐曲線中的定點(diǎn)、定值問題是高考命題的一個熱點(diǎn),也是圓錐曲線問題中的一個難點(diǎn),解決這個難點(diǎn)沒有常規(guī)的方法,但解決這個難點(diǎn)的基本思想是明確的,定點(diǎn)、定值問題必然是在變化中所表現(xiàn)出來的不變的量,那么就可以用變化的量表示問題的直線方程、數(shù)量積、比例關(guān)系等,這些直線方程、數(shù)量積、比例關(guān)系不受變化的量所影響的某個點(diǎn)或值,就是要求的定點(diǎn)、定值化解這類問題難點(diǎn)的關(guān)鍵就是引進(jìn)變化的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量例4若直線l:ykxm與橢圓1相交于A、B兩點(diǎn)(A、B不是左、右頂點(diǎn)),A2為橢圓的右頂點(diǎn)且AA2BA2,求證:直線l過定點(diǎn)知識點(diǎn)五圓錐曲線中的最值、范圍問題圓錐曲線中的最值、范圍問題,是高考熱點(diǎn),主要有以下兩種求解策略:(1)平面幾何法平面幾何法求最值問題,主要是運(yùn)用圓錐曲線的定義和平面幾何知識求解(2)目標(biāo)函數(shù)法建立目標(biāo)函數(shù)解與圓錐曲線有關(guān)的最值問題,是常規(guī)方法,其關(guān)鍵是選取適當(dāng)?shù)淖兞拷⒛繕?biāo)函數(shù),然后運(yùn)用求函數(shù)最值的方法確定最值例5已知A(4,0),B(2,2)是橢圓1內(nèi)的兩定點(diǎn),點(diǎn)M是橢圓上的動點(diǎn),求MAMB的最值例6已知F1、F2為橢圓x21的上、下兩個焦點(diǎn),AB是過焦點(diǎn)F1的一條動弦,求ABF2面積的最大值章末總結(jié)重點(diǎn)解讀例1解如圖所示,設(shè)雙曲線方程為1 (a0,b0)e2,c2a.由雙曲線的定義,得|PF1PF2|2ac,在PF1F2中,由余弦定理,得:F1FPFPF2PF1PF2cos 60(PF1PF2)22PF1PF2(1cos 60),即4c2c2PF1PF2.又SPF1F212,PF1PF2sin 6012,即PF1PF248.由,得c216,c4,則a2,b2c2a212,所求的雙曲線方程為1.例2(1)解過點(diǎn)P(2,0)且斜率為k的直線方程為:yk(x2)把yk(x2)代入y22x,消去y得k2x2(4k22)x4k20,由于直線與拋物線交于不同兩點(diǎn),故k20且(4k22)216k416k240,x1x24,x1x24,M、N兩點(diǎn)在拋物線上,yy4x1x216,而y1y20.當(dāng)m12k時,l的方程為yk(x2),直線過定點(diǎn)(2,0),與已知矛盾當(dāng)m2時,l的方程為yk,直線過定點(diǎn),直線l過定點(diǎn)例5解因?yàn)锳(4,0)是橢圓的右焦點(diǎn),設(shè)A為橢圓的左焦點(diǎn),則A(4,0),由橢圓定義知MAMA10.如圖所示,則MAMBMAMAMBMA10MBMA10AB.當(dāng)點(diǎn)M在BA的延長線上時取等號所以當(dāng)M為射線BA與橢圓的交點(diǎn)時,(MAMB)max10AB102.又如圖所示,MAMBMAMAMAMB10(MAMB)10AB,當(dāng)M在AB的延長線上時取等號所以當(dāng)M為射線AB與橢圓的交點(diǎn)時,(MAMB)min10AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玉米面條企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 炭黑高效吸附劑行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 智能安防背包行業(yè)跨境出海戰(zhàn)略研究報告
- 甲泛影鈉企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 甲基嘌呤企業(yè)ESG實(shí)踐與創(chuàng)新戰(zhàn)略研究報告
- 玫瑰酥餅企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 企業(yè)安全生產(chǎn)實(shí)踐測試題和答案
- 智能步行鞋企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 行政復(fù)議行政訴訟委托代理合同
- 人工智能應(yīng)用與開發(fā)知識考點(diǎn)
- 配電箱驗(yàn)收記錄表
- DB11-T1788-2020技術(shù)轉(zhuǎn)移服務(wù)人員能力規(guī)范
- (部編版一年級下冊)語文第七單元復(fù)習(xí)課件
- 建設(shè)項(xiàng)目用地預(yù)審與選址意見課件講解
- GB∕T 23524-2019 石油化工廢鉑催化劑化學(xué)分析方法 鉑含量的測定 電感耦合等離子體原子發(fā)射光譜法
- 寶寶生日祝福可愛卡通電子相冊PPT模板
- 盜竊案件現(xiàn)場勘查應(yīng)注意的問題
- 麗聲北極星分級繪本第二級上Dinner for a Dragon 教學(xué)設(shè)計(jì)
- 上海證券交易所(課堂PPT)
- 用人單位職業(yè)健康監(jiān)護(hù)檔案(一人一檔)
- 80噸吊車性能表
評論
0/150
提交評論