八年級(上)-數(shù)學-第十一章11.2.1 三角形的內角.doc_第1頁
八年級(上)-數(shù)學-第十一章11.2.1 三角形的內角.doc_第2頁
八年級(上)-數(shù)學-第十一章11.2.1 三角形的內角.doc_第3頁
八年級(上)-數(shù)學-第十一章11.2.1 三角形的內角.doc_第4頁
八年級(上)-數(shù)學-第十一章11.2.1 三角形的內角.doc_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

三角形的內角教學設計 教學基本信息課題人教版數(shù)學11.2.1三角形的內角作者及工作單位李蕓 潮安區(qū)江東中學 指導思想與理論依據(jù)三角形的有關知識是“空間與圖形”中最為核心、最為重要的內容,它不僅是最基本的直線型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎。(1)讓學生通過度量、折紙、拼圖、驗證三角形內角和,然后運用幾何的知識進行嚴密的論證,逐步轉到符號化處理,層層展開,步步深入,從而實現(xiàn)教學目的,最后達到推理論證的要求。(2)在教學過程中,通過設置帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考、操作,讓學生親身體驗知識的產(chǎn)生過程,激發(fā)學生探求知識的欲望,注重培養(yǎng)學生之間的合作、交流意識與語言表達能力,增強小組合作意識。 充分展示學生的個性,體現(xiàn)“學生是學習的主人”這一主題。 教材分析1、“三角形內角和”從數(shù)量關系揭示了任意一個三角形的三個內角之間的關系。這一知識不僅是計算角的度數(shù)的方法之一,也是以后在解決多邊形的內角和時都將轉化為三角形的內角和來解決。2、“三角形內角和定理的證明”作為本節(jié)課的內容,要求學生用證明命題的一般步驟對這一結論進行嚴密的證明,并規(guī)范幾何語言的書寫表達。通過本節(jié)課再一次向學生明確幾何知識的數(shù)學命題、結論都要進行嚴謹?shù)淖C明,這一節(jié)課是對前幾章幾何知識證明的延續(xù),起承上啟下作用。 3、本節(jié)課用添輔助線的方法把實驗得來的結論轉化為嚴密的證明,并且以后在學習幾何常常用這種方法得到新知識,讓學生明白添輔助線是解決數(shù)學問題(尤其是幾何問題)的重要思想方法。 學情分析l 學生認知發(fā)展分析:學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在之前通過不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖主要在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。八年級的學生具有很強的感性認知基礎,對一些具體的實踐活動十分感興趣。已經(jīng)具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。l 學生認知障礙點:用添輔助線的方法把實驗得來的結論轉化為嚴密的證明是學生形成本節(jié)課知識時最主要的障礙點。 教學目標知識與技能目標:通過操作活動, 探究并掌握三角形內角和性質,并能應用三角形內角和性質解決一些簡單的實際問題。過程與方法目標:經(jīng)歷觀察、操作、想象、推理、交流,發(fā)展空間觀念、推理能力和有條理的表達能力。情感態(tài)度和價值觀目標:學會多角度尋求解決問題的途徑,在操作中進行自覺思考,積累數(shù)學探索的經(jīng)驗。 教學重點和難點教學重點:三角形內角和定理教學難點:三角形內角和定理的推理過程 教學過程(教學過程的表述不必詳細到將教師、學生的所有對話、活動逐字記錄,但是應該把主要教學環(huán)節(jié)、教師活動、學生活動、設計意圖很清楚地再現(xiàn)。)教學環(huán)節(jié)教師活動預設學生行為設計意圖一、 創(chuàng)設情景,提出問題二、 活動探究,探索新知三、 應用新知,解決問題四、 課堂達標,知識鞏固五、 課堂小結六、 布置作業(yè)問題1: 三角形三個內角有什么關系?(一)創(chuàng)設問題,實驗探究探索:三角形三個內角的和等于180.(二)追求真理,推理論證題目:證明定理:三角形的內角和等于180 (1)找出命題的條件和結論,把命題改寫成“如果那么”的形式。(2)根據(jù)題意,畫出圖形(3)根據(jù)條件、結論,結合圖形,寫出已知、求證。已知:ABC,求證:A+B+C=180.引導學生抓住命題的結論“求證:A+B+C=180”.即:證明三個角湊成180 。讓學生自主探究證明形成180的方法,學生通過回顧由“平角的性質、兩直線平行的性質”,把“三個角的數(shù)量關系”轉化為“三個角的位置關系”。實現(xiàn)了把“數(shù)”向“形”的轉化。例1:如圖,已知ABC中,ABCC=2A ,BD是AC邊上的高,求DBC的度數(shù)。例2:如圖,這是A,B,C三島的平面圖,C島在A島的北偏東50方向,B島在A島的北偏東80方向,C島在B島的北偏西40方向,從B島看A,C兩島的視角ABC是多少度?從C島看A,B兩島的視角ACB是多少度?教科書P13第1、2題。1、三角形內角和定理:2、三角形內角和定理的證明的基本思路:3、證明中為了把三個分散的角加在一起,需要添加輔助線的目的.習題11.2第1、2、3、4題。 三角形的內角和等于180。學生在小學就知道三角形內角和等于180。(1)度量法學生畫出三角形,用量角器進行驗證。多數(shù)學生量得或湊得180,也有的量得179、181等等。(2)折拼法(同桌兩人小組合作探討)學生用多種方法自主證明。學生獨立思考完成, 兩名同學板演過程,師生共同評價學生小組討論,相互交流。問題的引入,激發(fā)學生學習的興趣。度量法讓學生在操作中知道測量會產(chǎn)生誤差,這促使學生去尋求新的研究方向。折拼法從實驗操作中獲得感知,直觀地讓學生體會“移動角的位置”“湊成平角” 。設計拼圖活動,實質是讓學生獲得感知,并且多種拼圖方法,為不同的論證方法創(chuàng)設發(fā)現(xiàn)情景。 讓學生充分體會文字語言、圖形語言、符號語言之間的轉化. 用學過的”平角、平行的性質把“三個角的數(shù)量關系”轉化為“三個角的位置關系”。實現(xiàn)了把“數(shù)”向“形”的轉化。讓學生體會知識之間的轉化,體會圖形之間的轉化. 使學生明白了“證明三角形內角和定理”的實質是移動三個內角的位置,用輔助線湊成平角或兩直線的同旁內角。使學生能夠靈活應用三角形內角和定理。在應用中,加深對三角形內角和定理的理解,提高解決問題的能力,滲透在實踐中鞏固新知的方法。同時對于方位角的理解進一步加深。使學生能夠靈活應用三角形內角和定理 根據(jù)因材施教的教學原則,“不同學生有不同發(fā)展需要”的思想,讓學有余力的學生在完成基礎型練習題后,深入鉆研所學知識點。 板書設計主板書三角形內角和定理ACBDE12已知:ABC,求證:A+B+C=180. 延長邊BC到點D,過點C作CEBA則1=A(兩直線平行,內錯角相等), 2=B(兩直線平行,同位角相等).又1+2+ACB180 (平角的定義)A+B+ACB180. 學生學習活動評價設計學生自我評價1、能否認真聽老師講課a能b經(jīng)常c偶爾d不能2、遇到我會的問題能否主動舉手a能b不能3、遇到問題能否善于思考a能b不能4、小組合作學習時能否提出自己的看法 a能b不能5、對于本節(jié)課所學知識是否掌握a是b否6、綜合練習是否獨立完成a是b否三角形的內角教學反思潮安區(qū)江東中學 李蕓課堂中,教師營造了寬松的學習氛圍,讓學生參與到學習過程中去,自主探索,大膽發(fā)表自己的觀點,讓學生在自主探索中獲得了不斷的發(fā)展。主要表現(xiàn)在:一、注重了學生的自主探索自主探索是學生學習數(shù)學的重要方式之一。教師是學生學習的組織者、引導者、合作者,而非知識的灌輸者,因而對一個問題的解決不是要教師將現(xiàn)成的方法傳授給學生,而是教給學生解決問題的策略,給學生一把在知識的海洋中遨游的槳,讓學生在積極地思考,大膽嘗試,主動探索中,獲取成功并體驗成功的喜悅。在課堂中,教師放手讓學生自主探索證明三角形內角和定理的方法,讓學生動手試一試,動口說一說,相互交流的過程中掌握了證明的各種方法。二、注重了學生的合作交流數(shù)學課程標準指出:教師要在具體的操作活動中進行獨立的思考,鼓勵學生發(fā)表自己的意見,并與同伴交流??梢?,合作交流在數(shù)學教學中也相當重要。在課堂中,教師注重了學生的合作交流。在教學過程中,通過設置帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考、操作,讓學生親身體驗知識的產(chǎn)生過程,激發(fā)學生探求知識的欲望,注重培養(yǎng)學生之間的合作、交流意識與語言表達能力,增強小組合作意識。 充分展示學生的個性,體現(xiàn)“學生是學習的主人”這一主題。三、注重了評價在數(shù)學課堂教學中,評價的形式有很多,但較多的是教師對學生的學習作出的評價,教師扮演著“裁判員”的角色。而在這節(jié)課中,除了教師對學生的評價外,更重視了學生之間的相互評價。讓學生在相互評價中既培養(yǎng)了能力,又尋找到了問題解決的方法,最終達到自我矯

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論