已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
在新材料精密加工的材料去除機(jī)制 摘要 現(xiàn)代產(chǎn)品的特點(diǎn)是高精密部件。廣泛的材料, 包括金屬及其合金,陶瓷,玻璃和半導(dǎo)體,完成給定的幾何形狀,光潔度,精度和表面完整性,以滿(mǎn)足服務(wù)需求。對(duì)于先進(jìn)的技術(shù)體系, 較高的制造精度要求是通過(guò)使用脆性材料的是比較復(fù)雜的。對(duì)于高效和這些材料的經(jīng)濟(jì)型加工 ,材料的去除機(jī)制的理解是必不可少的。這文章主要所涉及的脆性材料加工不同材料去除機(jī)制。 2001由 Elsevier 科學(xué)有限公司出版 關(guān)鍵字 :脆 ;缺陷 ;延展性 ;材料去除 ;精密加工 1.介紹 超精密加工技術(shù)已經(jīng)發(fā)展了近幾年為一些工業(yè) 應(yīng)用,例如激光 ,光學(xué),半導(dǎo)體,航空航天和汽車(chē)應(yīng)用的許多功能成本效益和質(zhì)量保證的精密零件。精密制造與實(shí)現(xiàn)產(chǎn)品的高形狀精度和表面質(zhì)量。該準(zhǔn)確性是在納米級(jí)。幾個(gè)加工技術(shù)可以在這里提到的像金剛石車(chē)削 ,磨削,研磨,拋光,珩磨,離子和電子束加工,激光加工等。該過(guò)程的效率的概述中給出的參考文獻(xiàn)。 1-3 。 金剛石由于超精密加工技術(shù)已經(jīng)因?yàn)樗母呔_度和高生產(chǎn)率的工業(yè)用光學(xué), 力學(xué)電子元件制造業(yè)的 1980年代已經(jīng)高度發(fā)達(dá)。對(duì)于許多先進(jìn)的技術(shù)系統(tǒng),較高的制造精度由使用的脆性材料的復(fù)雜化。在過(guò)去的十年里,中興在結(jié) 構(gòu)應(yīng)用中使用的陶瓷。由于近期發(fā)展的整體實(shí)力和先進(jìn)的陶瓷均勻性?xún)?yōu)良的熱,化學(xué)和這些材料的電阻可實(shí)現(xiàn) 4 。 陶瓷材料已被廣泛地適于作為功能材料,以及在各種工業(yè)領(lǐng)域中建筑材料及其應(yīng)用的精密零件也在增加 5。 然而,所需的精密零件的尺寸精度高和良好的表面質(zhì)量不消失必然由陶瓷的陶瓷粉末。由于精密加工的常規(guī)成形和燒結(jié)方法得到的成形后,燒結(jié)是公認(rèn)的關(guān)鍵技術(shù)來(lái)制造精密陶瓷部件 6 。 陶瓷材料的精加工過(guò)程中除去的量必須非常小,從而使裂紋不會(huì)殘留在成品的表面。研磨工藝如磨碎與金剛石磨料研磨已普遍采用陶瓷材料的精密 加工 7-9 。 然而,可以預(yù)期更好的表面完整性和更高的生產(chǎn)速率可以通過(guò)切割工藝實(shí)現(xiàn) 。與其他方法相比,切削也是有利于制造復(fù)雜形狀 .脆性材料可分為三組:非晶玻璃,硬晶體組成陶瓷。先進(jìn)陶瓷是一家現(xiàn)代化的發(fā)展。它們是由形成,鞏固和精確受控制的情況熱處理的良好多孔顆粒制成。否則使用這些材料使高科技設(shè)備的開(kāi)發(fā)和系統(tǒng)根本不能生產(chǎn) 10 。 同樣的情況可以作出有關(guān) 使用某些晶體材料(如半導(dǎo)體)和先進(jìn)的高溫眼鏡。 2. 球墨鑄鐵加工 在加工公差的改善,使研究人員能夠揭露脆性材料的韌性材料去除 。在某些控制的條件下,可 以對(duì)機(jī)器脆性材料像陶瓷使用單點(diǎn)或多點(diǎn)金剛石工具,使得材料被移除,留下一個(gè)無(wú)裂紋的表面(圖 4) 。這個(gè)過(guò)程被稱(chēng)為韌性政權(quán)加工。 韌性政權(quán)加工如下一個(gè)事實(shí),即所有的材料將塑性變形如果變形非常小。在查看由宮下 17 中描述的,如圖韌性政權(quán)加工是另一種方式。 5 。材料的去除速率磨碎和拋光進(jìn)行比較,并存在其中既不技術(shù)已被利用的間隙。這區(qū)域可以被稱(chēng)為微研磨間隙,因?yàn)樵搮^(qū)域位于磨削和切削 .這間隙之間是很重要的,因?yàn)樗砹隧g性和脆性區(qū)域制度之間的閾值,適用范圍廣的象陶瓷,玻璃和半導(dǎo)體材料。 2.1.韌性材料加工 原理 脆性材料的加工過(guò)程中從脆性到韌性模式的轉(zhuǎn)換中的應(yīng)變能和表面能 18之間的能量平衡方面進(jìn)行說(shuō)明。應(yīng)用負(fù)載時(shí)本地化是脆性材料加工的興趣。制造壓痕過(guò)程中,這會(huì)產(chǎn)生壓痕裂紋,這些裂紋在塑性加工機(jī)制發(fā)揮一個(gè)很重要作用 19。 一個(gè)關(guān)鍵的穿透深度為直流裂描述如下 20 Kc 為斷裂韌度, H 是硬度, E 是彈性模量, b 是依賴(lài)于工具的幾何形狀。圖。圖 6示出沿垂直于切斷方向該工具的投影。根據(jù)能量平衡概念,斷裂損傷將啟動(dòng)在有效的切斷深度和將傳播到平均深度 YC 。如果不繼續(xù)損害切面呈平面下方,球狀態(tài)的條件下得以 實(shí)現(xiàn)。橫進(jìn)給量 f 決定直流沿刀尖的位置。 f 的舉動(dòng)直流較大的值更接近韌轉(zhuǎn)變現(xiàn)象的工具中心 .另一個(gè)解釋是基于解理斷裂是由于時(shí)候。 21 。裂解和塑性變形的臨界值是由缺陷 /錯(cuò)在加工材料的密度影響的。因?yàn)槿毕莸拿芏葲](méi)有在脆性材料那么大 ,斷裂的臨界值取決于應(yīng)力場(chǎng)的大小。 圖 7顯示了排屑與尺寸效應(yīng)的模型。當(dāng)未切割晶片厚度小,臨界應(yīng)力場(chǎng)的小,以避免分裂。在芯片結(jié)果的過(guò)渡 2.2.在韌性加工材料去除機(jī)制 加工由兩個(gè)配合表面,即在工件和磨料工具的緊密接觸會(huì)產(chǎn)生有用的表面。然而,材料去除的微觀(guān)結(jié)構(gòu)由材料而異 取決于兩個(gè)工件和刀具材料的微觀(guān)結(jié)構(gòu)。 通常,在脆性材料的加工精度高,具有大的負(fù)前角的工具被使用(高達(dá) -30 ) 。的負(fù)前角為使被加工材料的塑性變形的刀具半徑之下所需的靜水壓力。在用單刃刀具切削加工的前角為正或接近 0 因此,工具的變形提前將在濃縮剪切面或在一個(gè)狹窄的平面,如圖 8所示。在研磨過(guò)程中,人們普遍認(rèn)為,該工具將有一個(gè)大的負(fù)前角,也使切削力是大約一半的推力 圖。圖 8( b )。在脆性材料在切削深度比刀沿半徑較小的超精密加工中,工具呈現(xiàn)一個(gè)大的負(fù)前角和刀具邊緣 行為的半徑為如圖所示的壓頭。圖 8( c)所示。這代表縮進(jìn)整個(gè)工件表面鈍壓頭滑動(dòng)。這是類(lèi)似的情況下被牢固地支承在工具和應(yīng)力,從而產(chǎn)生不平均的通風(fēng)口但工具下方的材料產(chǎn)生塑性由于大的靜壓力,如圖變形下切割工件。圖 8( d)所示。 3.材料的去除在玻璃和陶瓷 光學(xué)玻璃的延性磨削被認(rèn)為是一個(gè)加工方法最完美適配的材料 22。玻璃是從熔融狀態(tài)冷到固態(tài)無(wú)結(jié)晶無(wú)機(jī)材料。眼鏡的非結(jié)晶(或無(wú)定形)和響應(yīng)的液體和固體之間的中間 ;即,在常溫下它們的行為在一個(gè)脆性的方法,但上述的粘稠方式的玻璃化轉(zhuǎn)變溫度。玻璃的脆性高是由于原子排 列不規(guī)則。在象金屬的結(jié)晶材料,該原子具有一個(gè)固定裝置和由密勒指數(shù)描述的規(guī)律性,而玻璃結(jié)構(gòu)沒(méi)有顯示出任何明確的取向 23。 陶瓷,例如硬度和強(qiáng)度,化學(xué)惰性和高耐磨損性的獨(dú)特的物理和機(jī)械性能的機(jī)械和電子部件提供給其增加的應(yīng)用程序。先進(jìn)陶瓷的結(jié)構(gòu)和磨損的應(yīng)用包括氧化鋁( Al2O3) ,氮化硅( Si3N4 ) ,碳化硅( SiC ) ,氧化鋯(氧化鋯)和塞隆。原子鍵合的性質(zhì)決定了材料的硬度以及楊氏模量。對(duì)于韌性金屬粘合材料的比 E / H 為約 250,而對(duì)于脆性材料的比率為約 20 。的比例將位于這些值 硬質(zhì)合金 材料之間。 低密度和位錯(cuò)的流動(dòng)性低的原因是高硬度的一些脆性物料。 4.研磨柔性 有所謂的 “ 溫和 ” 加工,其中據(jù)信,塑性變形是不參與只在材料去除 26另一種假說(shuō)。根據(jù)這一理論,由于變形(塑性 /脆性)的模式依賴(lài)于應(yīng)力,而不是在應(yīng)力的大小的狀態(tài)下,也很難認(rèn)為變形的模式將通過(guò)僅僅改變切削深度改變保持所有其他參數(shù)不變。調(diào)查表明,為了使脆性材料,以在一個(gè)塑性方式變形,相當(dāng)大的靜液壓力和 /或溫度是必需的。減少切削深度只會(huì)降低應(yīng)力不改變應(yīng)力狀態(tài)。因此這個(gè)理論表明,在切下的深度所產(chǎn)生的表面的優(yōu)良品質(zhì),是由于上述的效果,而不一定塑性變形。在更 小的切削深度,裂紋可能形成,但他們可能無(wú)法傳播,以形成較大的裂縫。因此,在磨非常小切深可稱(chēng)為溫和的打磨,而不是延性磨削。 5.材料去除與微 折斷 在對(duì)脆性材料的常規(guī)機(jī)械加工操作大部分材料是由脆性斷裂去除,從而實(shí)現(xiàn)了更高的去除率。圖。圖 10示出壓痕的不同階段。壓頭下方的材料最初經(jīng)受彈性變形27,28 。作為壓痕的繼續(xù),下面的材料經(jīng)受高的靜水壓力,因此非彈性 /塑性變形區(qū)產(chǎn)生的圖。圖 10( a ) 。在某些時(shí)候,變形引起的缺陷發(fā)展成一個(gè)中間排氣孔,并隨后可卸圖中發(fā)展成一個(gè)位數(shù)裂紋。圖 10( b ) 。在負(fù)荷進(jìn)一 步增加產(chǎn)生的排氣部的生長(zhǎng)與圖第 10( c ) 。在卸載發(fā)泄開(kāi)始關(guān)閉 圖。第 10( d ) 。在壓頭切除,側(cè)通風(fēng)口開(kāi)始啟動(dòng)下面的聯(lián)系的塑性變形區(qū)的基地附近,展開(kāi)橫向上飛機(jī)接近平行于試樣表面。這是由于殘余拉伸應(yīng)力場(chǎng)的存在。一旦徹底清除壓頭,側(cè)通風(fēng)口繼續(xù)向試樣表面延伸,并可能最終導(dǎo)致材料去除剝落。裂縫地層通常是由于殘余應(yīng)力場(chǎng),這會(huì)導(dǎo)致從一個(gè)不匹配的彈塑性變形過(guò)程29。 Material removal mechanisms in precision machining of new materials Abstract Modern-day products are characterised by high-precision components. A wide range of materials, includingmetals and their alloys, ceramics, glasses and semiconductors, are finished to a given geometry, finish,accuracy and surface integrity to meet the service requirements. For advanced technology systems, demandsfor higher fabrication precision are complicated by the use of brittle materials. For efficient and economicalmachining of these materials, an understanding of the material removal mechanism is essential. This paperfocuses on the different material removal mechanisms involved in machining of brittle materials. 2001Published by Elsevier Science Ltd. Keywords: Brittle; Defects; Ductility; Material removal; Precision machining 1. Introduction Ultra-precision machining technology has been developed over recent years for the manufactureof cost-effective and quality-assured precision parts for several industrial applications such aslasers, optics, semiconductors, aerospace and automobile applications. Precision manufacturingdeals with the realisation of products with high shape accuracy and surface quality. The accuracymay be at the nanometric level. Several machining techniques can be mentioned here like diamondturning, grinding, lapping, polishing, honing, ion and electron-beam machining, laser machining,etc. Efficient overviews of the processes are given in Refs. 13. Ultra-precision machining technology has been highly developed since the 1980s mainlybecause of its high accuracy and high productivity in the manufacturing of optical, mechanicaland electronic components for industrial use. For many advanced technology systems, higherfabrication precision is complicated by the use of brittle materials. The past decade has seen atremendous resurgence in the use of ceramics in structural applications. The excellent thermal,chemical and wear resistance of these materials can be realised because of recent improvementsin the overall strength and uniformity of advanced ceramics 4. Ceramic materials have been widely adapted as functional materials as well as structuralmaterials in various industrial fields and their application to precision parts is also increasing 5. However, the high dimensional accuracy and good surface quality required for precision parts arenot necessarily obtained by the conventional forming and sintering process of ceramic powders.Thus precision finishing of the ceramics after forming and sintering is recognised as a key technologyto precision ceramic parts 6. The quantity of ceramic material to be removed by the finishing process must be very small,so that microcracks do not remain on the finished surface. Abrasive processes such as grindingor lapping with diamond abrasives have generally been adopted for precision finishing of ceramics79. However, it is expected that better surface integrity and higher production rates can berealised by cutting processes. Compared with other processes, cutting is also advantageous inmachining complex shapes.Brittle materials can be divided into three groups: amorphous glasses, hard crystals andadvanced ceramics. Advanced ceramics are a modern development. They are made from fineporous particles that are formed, consolidated and thermally treated under precisely controlledconditions. Use of these materials enables development of high-technology devices and systemsthat simply could not be produced otherwise 10. The same statement could be made about theuse of certain crystalline materials (e.g., semiconductors) and advanced high-temperature glasses. 2. Ductile regime machining Improvements in machining tolerances have enabled researchers to expose the ductile materialremoval of brittle materials. Under certain controlled conditions, it is possible to machine brittlematerials like ceramics using single- or multi-point diamond tools so that material is removed byplastic flow, leaving a crack-free surface (Fig. 4). This process is called ductile regime machining. Ductile regime machining follows from the fact that all materials will deform plastically if thescale of deformation is very small. Another way of viewing the ductile regime machining problemis that described by Miyashita 17, as shown in Fig. 5. The material removal rates for grindingand polishing are compared and there is a gap in which neither technique has been utilised. Thisregion can be termed the micro-grinding gap since the region lies in between grinding and polishing.This gap is important because it represents the threshold between ductile and brittle grindingregimes for a wide range of materials like ceramics, glasses and semiconductors. 2.1. Principle of ductile regime machining The transition from brittle to ductile mode during machining of brittle materials is described in terms of the energy balance between strain energy and surface energy 18. Localised fracturesproduced during application of load are of interest in machining of brittle materials. Machiningis an indentation process during which indentation cracks are generated, and these cracks play animportant role in ductile regime machining 19. A critical penetration depth dc for fracture initiation is described as follows 20 where Kc is the fracture toughness, H is the hardness, E is the elastic modulus and b is a constantwhich depends on tool geometry. Fig. 6 shows a projection of the tool perpendicular to the cuttingdirection. According to the energy balance concept, fracture damage will initiate at the effectivecutting depth and will propagate to an average depth yc. If the damage does not continue belowthe cut surface plane, ductile regime conditions are achieved. The cross-feed f determines theposition of dc along the tool nose. Larger values of f move dc closer to the tool centreline.Another interpretation of ductile transition phenomena is based on cleavage fracture due to thepresence of defects 21. The critical values of a cleavage and plastic deformation are affectedby the density of defects/dislocations in the work material. Since the density of defects is not solarge in brittle materials, the critical value of fracture depends on the size of the stress field. Fig 7 shows a model of chip removal with size effects. When the uncut chip thickness is small, thesize of the critical stress field is small to avoid cleavage. Consequently a transition in the chip 2.2. Material removal mechanisms in ductile regime machining Machining generates a useful surface by intimate contact of two mating surfaces, namely the workpiece and abrasive tool. However, the micromechanisms of material removal differ from material to material depending upon the microstructure of both workpiece and tool material. Generally, during high-precision machining of brittle materials, tools having large negative rake angles are used (as high as -30). The negative rake angle provides the required hydrostatic pressure for enabling plastic deformation of the work material beneath the tool radius. During conventional machining with a single-point tool, the rake angle will be positive or close to 0.With positive rake angle, the cutting force will generally be twice the thrust force. Hence the deformation ahead of the tool will be in a concentrated shear plane or in a narrow plane as shown in Fig. 8. During the grinding process, it is generally agreed that the tool will have a large negative rake angle and also that the cutting force is about half of the thrust force Fig. 8(b). In ultraprecision machining of brittle materials at depths of cut smaller than the tool edge radius, the tool presents a large negative rake angle and the radius of the tool edge acts as an indenter as shown in Fig. 8(c). This represents indentation sliding of a blunt indenter across the workpiece surface. This is similar to a situation where the tool is rigidly supported and cuts the workpiece under a stress such that no median vents are generated but the material below the tool is plastically deformed due to large hydrostatic pressure as in Fig. 8(d). 3. Material removal in glass and ceramics The ductile grinding of optical glass is considered as the most perfect adaptation of a machining method to the material 22. Glass is an inorganic material supercooled from the molten state to the solid state without crystallising. Glasses are non-crystalline (or amorphous) and respond intermediate between a liquid and a solid; i.e., at room temperature they behave in a brittle manner 1838 P.S. Sreejith, B.K.A. Ngoi / International Journal of Machine Tools & Manufacture 41 (2001) 18311843 but above the glass transition temperature in a viscous manner. The high brittleness of glass is due to the irregular arrangement of atoms. In crystalline materials like metals, the atoms have a fixed arrangement and regularity described by Miller indices, whereas glass structure does not show any definite orientation 23. The unique physical and mechanical properties of ceramics such as hardness and strength,chemical inertness and high wear resistance have contributed to their increased application in mechanical and electrical components. The advanced ceramics for structural and wear applications include alumina (Al2O3), silicon nitride (Si3N4), silicon carbide (SiC), zirconia (ZrO2) and SiAlON. The nature of atomic bonding determines the hardness of the material as well as the Youngs modulus. For ductile metallic-bonded materials the ratio E/H is about 250, while for covalentbonded brittle materials the ratio is about 20. The ratio will lie in between these values for ionicbonded materials. Low density and low mobility of dislocations are the reasons for the high hardness of some of brittle materials. 4. Gentle grinding There is an alternative hypothesis called “gentle” machining wherein it is believed that plastic deformation is not involved exclusively in the material removal 26. According to this theory, since the mode of deformation (plastic/brittle) depends on the state of the stress and not on the magnitude of the stress, it is difficult to assume that the mode of deformation will change by merely changing the depth of cut keeping all other parameters constant. Investigations have shown that, in order for brittle materials to deform in a ductile manner, considerable hydrostatic stress and/or temperature are required. Reducing the depth of cut will merely decrease the stress without changing the stress state. Therefore this theory suggests that the superior quality of the surface produced at lower depth of cut is due to the above effect and not necessarily to plastic deformation. At smaller depths of cut, microcracks may be formed but they may not propagate to form larger cracks. Hence grinding at extremely small depth of cut can be called gentle grinding rather than ductile grinding. 5. Material removal with microfracture During conventional machining operations on brittle materials most of the material is removed by brittle fracture, enabling higher removal rates. Fig. 10 shows the various stages of indentation. The material below the indenter is initially subjected to elastic deformation 27,28. As indentation continues, the material below is subjected to high hydrostatic pressure and hence an inelastic/plastic deformation zone is produced Fig. 10(a). At some point, a deformation-induced flaw develops into a median vent and subsequently can develop into a median crack during unloading Fig. 10(b). Further increase in load produces growth of the vent as in Fig. 10(c). On unloading the vent begins to close Fig. 10(d). During indenter removal, lateral vents begin to initiate near the base of the plastic deformation zone below the contact and spread out laterally on a plane closely parallel to the specimen surface. This is due to the presence of a residual tensile stress field. Upon complete removal of the indenter, the lateral vents continue to extend towards the specimen surface and may finally lead to material removal by chipping. Crack forma-tion is generally due to the residual stress field, which results from a mismatch in the elasticplastic deformation process 29. 6. Material removal without microfracture It is well known that the extent of plastic deformation is determined by the magnitude of the hydrostatic stress. Under high hydrostatic pressures brittle materials are capable of ductile behaviour 30 at room temperatures. Such a condition exists at light loads under the indenter in indentation testing. Immediately below the indenter, the material is assumed to behave as a radially expanding core exerting uniform hydrostatic pressure on its surroundings, encasing the core in an ideally plastic region. Beyond the plastic region lies the elastic matrix 31. Fig. 11 shows a model for elasticplastic inde
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年旅游服務(wù)代理合同樣本
- 2025年度綠植花卉租賃與城市景觀(guān)提升合同范本4篇
- 2025年度綠化工程環(huán)境保護(hù)與節(jié)能減排合同范本4篇
- 2025版綠色建筑項(xiàng)目租賃與能源管理合同4篇
- 2025年度個(gè)人二手房交易安全協(xié)議范本4篇
- 個(gè)人間短期資金周轉(zhuǎn)合同書(shū)版
- 個(gè)人買(mǎi)賣(mài)合同范文(2024版)
- 二零二五年度風(fēng)力發(fā)電機(jī)組安裝及運(yùn)營(yíng)維護(hù)協(xié)議3篇
- 2025年度個(gè)稅起征點(diǎn)調(diào)整下簽勞務(wù)合同稅務(wù)籌劃合作協(xié)議
- 二零二五年度素食餐飲品牌授權(quán)合作合同
- 車(chē)站值班員(中級(jí))鐵路職業(yè)技能鑒定考試題及答案
- 極簡(jiǎn)統(tǒng)計(jì)學(xué)(中文版)
- JTG∕T E61-2014 公路路面技術(shù)狀況自動(dòng)化檢測(cè)規(guī)程
- 高中英語(yǔ)短語(yǔ)大全(打印版)
- 2024年資格考試-對(duì)外漢語(yǔ)教師資格證筆試參考題庫(kù)含答案
- 軟件研發(fā)安全管理制度
- 三位數(shù)除以?xún)晌粩?shù)-豎式運(yùn)算300題
- 寺院消防安全培訓(xùn)課件
- 比摩阻-管徑-流量計(jì)算公式
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、異丙醇和正丁醇檢驗(yàn)
- 五年級(jí)數(shù)學(xué)應(yīng)用題100道
評(píng)論
0/150
提交評(píng)論