




已閱讀5頁,還剩49頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
物理學(xué)論文-TheEquivalencePrinciple,theCovariancePrincipleandtheQuestionofSelf-ConsistencyinGeneralRelativityTheEquivalencePrinciple,theCovariancePrincipleandtheQuestionofSelf-ConsistencyinGeneralRelativityC.Y.LoAppliedandPureResearchInstitute17NewcastleDrive,Nashua,NH03060,USASeptember2001AbstractTheequivalenceprinciple,whichstatesthelocalequivalencebetweenaccelerationandgravity,requiresthatafreefallingobservermustresultinaco-movinglocalMinkowskispace.Ontheotherhand,covarianceprincipleassumesanyGaussiansystemtobevalidasaspace-timecoordinatesystem.Giventhemathematicalexistenceoftheco-movinglocalMinkowskispacealongatime-likegeodesicinaLorentzmanifold,acrucialquestionforasatisfactionoftheequivalenceprincipleiswhetherthegeodesicrepresentsaphysicalfreefall.Forinstance,ageodesicofanon-constantmetricisunphysicaliftheaccelerationonarestingobserverdoesnotexist.ThisanalysisismodeledafterEinsteinillustrationoftheequivalenceprinciplewiththecalculationoflightbending.Tojustifyhiscalculationrigorously,itisnecessarytoderivetheMaxwell-NewtonApproximationwithphysicalprinciplesthatleadtogeneralrelativity.Itisshown,asexpected,thattheGalileantransformationisincompatiblewiththeequivalenceprinciple.Thus,generalmathematicalcovariancemustberestrictedbyphysicalrequirements.Moreover,itisshownthroughanexamplethataLorentzmanifoldmaynotnecessarilybediffeomorphictoaphysicalspace-time.Alsoobservationsupportsthataspacetimecoordinatesystemhasmeaninginphysics.Ontheotherhand,Pauliversionleadstotheincorrectspeculationthatingeneralrelativityspace-timecoordinateshavenophysicalmeaning1.Introduction.Currently,amajorproblemingeneralrelativityisthatanyRiemanniangeometrywiththepropermetricsignaturewouldbeacceptedasavalidsolutionofEinsteinequationof1915,andmanyunphysicalsolutionswereaccepted1.Thisis,inpart,duetothefactthatthenatureofthesourcetermhasbeenobscuresincethebeginning2,3.Moreover,themathematicalexistenceofasolutionisoftennotaccompaniedwithunderstandingintermsofphysics1,4,5.Consequently,theadequacyofasourceterm,foragivenphysicalsituation,isoftennotclear6-9.Pauli10consideredthathetheoryofrelativitytobeanexampleshowinghowafundamentalscientificdiscovery,sometimesevenagainsttheresistanceofitscreator,givesbirthtofurtherfruitfuldevelopments,followingitsownautonomouscourse.Thus,inspiteofobservationalconfirmationsofEinsteinpredictions,oneshouldexaminewhethertheoreticalself-consistencyissatisfied.Tothisend,onemayfirstexaminetheconsistencyamongphysicalrincipleswhichleadtogeneralrelativity.Thefoundationofgeneralrelativityconsistsofa)thecovarianceprinciple,b)theequivalenceprinciple,andc)thefieldequationwhosesourcetermissubjectedtomodification3,7,8.Einsteinequivalenceprincipleisthemostcrucialforgeneralrelativity10-13.Inthispaper,theconsistencybetweentheequivalenceprincipleandthecovarianceprinciplewillbeexaminedtheoretically,inparticularthroughexamples.Moreover,theconsistencybetweentheequivalenceprincipleandEinsteinfieldequationof1915isalsodiscussed.Theprincipleofcovariance2statesthathegenerallawsofnaturearetobeexpressedbyequationswhichholdgoodforallsystemsofcoordinates,thatis,arecovariantwithrespecttoanysubstitutionswhatever(generallycovariant).Thecovarianceprinciplecanbeconsideredasconsistingoftwofeatures:1)themathematicalformulationintermsofRiemanniangeometryand2)thegeneralvalidityofanyGaussiancoordinatesystemasaspace-timecoordinatesysteminphysics.Feature1)waseloquentlyestablishedbyEinstein,butfeature2)remainsanunverifiedconjecture.IndisagreementwithEinstein2,Eddington11pointedoutthatpaceisnotalotofpointsclosetogether;itisalotofdistancesinterlocked.EinsteinacceptedEddingtoncriticismandnolongeradvocatedtheinvalidargumentsinhisbook,heMeaningofRelativityof1921.EinsteinalsopraisedEddingtonbookof1923tobethefinestpresentationofthesubjecteverwrittenMoreover,incontrasttothebeliefofsometheorists14,15,ithasneverbeenestablishedthattheequivalenceofallframesofreferencerequirestheequivalenceofallcoordinatesystems9.Ontheotherhand,ithasbeenpointedoutthat,becauseoftheequivalenceprinciple,themathematicalcovariancemustberestricted8,9,16.Moreover,Kretschmann17pointedoutthatthepostulateofgeneralcovariancedoesnotmakeanyassertionsaboutthephysicalcontentofthephysicallaws,butonlyabouttheirmathematicalformulation,andEinsteinentirelyconcurredwithhisview.Pauli10pointedoutfurther,hegenerallycovariantformulationofthephysicallawsacquiresaphysicalcontentonlythroughtheprincipleofequivalence.Nevertheless,Einstein2arguedthat.thereisnoimmediatereasonforpreferringcertainsystemsofcoordinatestoothers,thatistosay,wearriveattherequirementofgeneralco-variance.Thus,Einsteincovarianceprincipleisonlyaninterimconjecture.Apparently,hecouldmeanonlytoamathematicalcoordinatesystemforcalculationsincehisequivalenceprinciple,amongothers,isanimmediatereasonforpreferringcertainsystemsofcoordinatesinphysics(壯5&6).Notethatamathematicalgeneralcovariancerequires,asHawkingdeclared18,theindistinguishabilitybetweenthetime-coordinateandaspace-coordinate.Ontheotherhand,theequivalenceprincipleisrelatedtotheMinkowskispace,whichrequiresadistinctionbetweenthetime-coordinateandaspace-coordinate.Hence,themathematicalgeneralcovarianceisinherentlyinconsistentwiththeequivalenceprinciple.Althoughtheequivalenceprincipledoesnotdeterminethespace-timecoordinates,itdoesrejectphysicallyunrealizablecoordinatesystems9.WhereasinspecialrelativitytheMinkowskimetriclimitsthecoordinatetransformations,amonginertialframesofreference,totheLorentz-Poincartransformations;ingeneralrelativitytheequivalenceprinciplelimitsthephysicalcoordinatetransformationstobeamongvalidspace-timecoordinatesystems,whichareinprinciplephysicallyrealizable.Thus,theroleoftheMinkowskimetricisextendedbytheequivalenceprincipleeventowheregravityispresent.Mathematically,however,theequivalenceprinciplecanbeincompatiblewithasolutionofEinsteinequation,evenifitisaLorentzmanifold(whosespace-timemetrichasthesamesignatureasthatoftheMinkowskispace).IthasbeenproventhatcoordinaterelativisticcausalitycanbeviolatedforsomeLorentzmanifolds9,16.Unfortunately,duetoinadequatephysicalunderstanding,somerelativists19-23believethatapropermetricsignaturewouldimplyasatisfactionoftheequivalenceprinciple.Themisconceptionthat,inaLorentzmanifold,areefallwouldautomaticallyresultinalocalMinkowskispace20,23,hasdeep-rootedphysicalmisunderstandingsfrombelievinginthegeneralmathematicalcovarianceinphysics.Althoughtheequivalenceprincipleforaphysicalspace-time1)isclearlystated,theconditionsforitssatisfactioninaLorentzmanifoldhavebeenmisleadinglyoversimplified.Thus,itisnecessarytoclarifyfirst,intermsofphysics,themeaningoftheequivalenceprincipleanditssatisfaction(2&3).Thecrucialconditionforasatisfactionoftheequivalenceprincipleisthatthegeodesicrepresentsaphysicalfreefall.ThemathematicalexistenceoflocalMinkowskispacesmeansonlymathematicalcompatibilityofthetheoryofgeneralrelativitytoRiemanniangeometry.Then,itbecomespossibletodemonstratemeaningfullythroughdetailedexamplesthatdiffeomorphiccoordinatesystemsmaynotbeequivalentinphysics(5&6).Moreover,toavoidprejudiceduetotheoreticalpreferences,thesedemonstrationsarebasedontheoreticalinconsistency.Tothisend,Einsteinillustrationoftheequivalenceprincipleinhiscalculationofthelightbendingisusedasamodelforthisanalysis.However,inhiscalculation,therearerelatedtheoreticalproblemsthatmustbeaddressed.First,thenotionofgaugeusedinhiscalculationisactuallynotgenerallyvalid9aswillbeshowninthispaper.Also,itisknownthatvalidityofthe1915Einsteinequationisquestionable7,8,24-26.Foracompletetheoreticalanalysis,theseissuesshould,ofcourse,beaddressedthoroughly.Nevertheless,forthevalidityofEinsteincalculationonthelightbending2,itissufficienttojustifythelinearfieldequationasavalidapproximation.Forthispurpose,theMaxwell-NewtonApproximation(i.e.,thelinearfieldequation)isderiveddirectlyfromthephysicalprinciplesthatleadtogeneralrelativity(4).Moreover,thereareintrinsicallyunphysicalLorentzmanifoldsnoneofwhichisdiffeomorphic21toaphysicalspace-time(7).Thus,toacceptaLorentzmanifoldasvalidinphysics,itisnecessarytoverifytheequivalenceprinciplewithaspace-timecoordinatesystemforphysicalinterpretations.Then,forthepurposeofcalculationonly,anydiffeomorphismcanbeusedtoobtainnewcoordinates.Itisonlyinthissensethatacoordinatesystemforaphysicalspace-timecanbearbitrary.Inthispaper,therequirementofageneralcovarianceamongallconceivablemathematicalcoordinatesystems2willbefurtherconfirmedtobeanover-extendeddemand9.(NotethatEddington11didnotacceptthegaugerelatedtogeneralmathematicalcovariance.)Analysisshowsthatasatisfactionoftheequivalenceprinciplerestrictedcovariance(壯3-5).Afterthisnecessaryrectification,somecurrentlyacceptedwell-knownLorentzmanifoldswouldbeexposedasunphysical(7).But,generalrelativityasaphysicaltheoryisunaffected9.Itishopedthatthisclarificationwouldhelpurtherfruitfuldevelopments,followingitsownautonomouscourse10.2.EinsteinEquivalencePrinciple,FreeFall,andPhysicalSpace-TimeCoordinatesInitiallybasedontheobservationthatthe(passive)gravitationalmassandinertialmassareequivalent,Einsteinproposedtheequivalenceofuniformaccelerationandgravity.In1916,thisproposalisextendedtothelocalequivalenceofaccelerationandgravity2becausegravityisingeneralnotuniform.Thus,ifgravityisrepresentedbythespace-timemetric,thegeodesicisthemotionofaparticleundertheinfluenceofgravity.Then,foranobserverinafreefall,thelocalmetricislocallyconstant.Tobeconsistentwithspecialrelativity,suchalocalmetricisrequiredtobelocallyaMinkowskispace2.Thus,acentralproblemingeneralrelativityiswhetherthegeodesicrepresentsaphysicalfreefall.However,validityofthisglobalpropertyisrealizedlocallythroughasatisfactionoftheequivalenceprinciple.Moreover,Eddington11observedthatspecialrelativityshouldapplyonlytophenomenaunrelatedtothesecondorderderivativesofthemetric.Thus,Eins
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆河南省商丘市城隍鄉(xiāng)湯莊中學(xué)高二下化學(xué)期末聯(lián)考模擬試題含解析
- 安徽省定遠(yuǎn)縣張橋中學(xué)2025年化學(xué)高二下期末學(xué)業(yè)水平測試模擬試題含解析
- 2025屆廣東省揭陽市惠來一中化學(xué)高二下期末學(xué)業(yè)水平測試模擬試題含解析
- 福建省福州市屏東中學(xué)2025屆高二下化學(xué)期末調(diào)研模擬試題含解析
- 四川省成都市溫江中學(xué)2025屆高一下化學(xué)期末經(jīng)典模擬試題含解析
- 2025屆阿里市重點(diǎn)中學(xué)高二下化學(xué)期末預(yù)測試題含解析
- 梅州農(nóng)業(yè)資金管理辦法
- 校準(zhǔn)驗(yàn)證記錄管理辦法
- 國內(nèi)登山管理辦法珠峰
- 智能電網(wǎng)與能源互聯(lián)網(wǎng)協(xié)同創(chuàng)新-洞察及研究
- 《三國的世界》解說詞 第五集
- 供貨方案及供貨計(jì)劃范文六篇
- 全老舊小區(qū)改造配套基礎(chǔ)設(shè)施項(xiàng)目工程監(jiān)理實(shí)施細(xì)則
- DB41T 1564-2018豫南再生稻栽培技術(shù)規(guī)程
- 統(tǒng)編初中《道德與法治》課標(biāo)解讀與新教材介紹課件
- GB/T 5975-1986鋼絲繩用壓板
- GB/T 3235-2008通風(fēng)機(jī)基本型式、尺寸參數(shù)及性能曲線
- GA/T 1127-2013安全防范視頻監(jiān)控?cái)z像機(jī)通用技術(shù)要求
- 心臟術(shù)后圍手術(shù)期的液體管理原則及注意點(diǎn)課件
- 內(nèi)膜系統(tǒng)溶酶體過氧化物酶體
- 警察長棍教案
評(píng)論
0/150
提交評(píng)論