下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2015年江蘇省常州市中考數(shù)學試卷一、選擇題(每小題2分,共16分)1(2分)(2015潛江)3的絕對值是()A3B3CD2(2分)(2015常州)要使分式有意義,則x的取值范圍是()Ax2Bx2Cx2Dx23(2分)(2015常州)下列“慢行通過,注意危險,禁止行人通行,禁止非機動車通行”四個交通標志圖(黑白陰影圖片)中為軸對稱圖形的是()ABCD4(2分)(2015常州)如圖,BCAE于點C,CDAB,B=40,則ECD的度數(shù)是()A70B60C50D405(2分)(2015常州)如圖,ABCD的對角線AC、BD相交于點O,則下列說法一定正確的是()AAO=ODBAOODCAO=OCDAO
2、AB6(2分)(2015常州)已知a=,b=,c=,則下列大小關系正確的是()AabcBcbaCbacDacb7(2分)(2015常州)已知二次函數(shù)y=x2+(m1)x+1,當x1時,y隨x的增大而增大,而m的取值范圍是()Am=1Bm=3Cm1Dm18(2分)(2015常州)將一張寬為4cm的長方形紙片(足夠長)折疊成如圖所示圖形,重疊部分是一個三角形,則這個三角形面積的最小值是()Acm2B8cm2Ccm2D16cm2二、填空題(每小題2分,共20分)9(2分)(2015常州)計算(1)0+21=10(2分)(2015常州)太陽半徑約為696 000千米,數(shù)字696 000用科學記數(shù)法表示
3、為11(2分)(2015常州)分解因式:2x22y2=12(2分)(2015常州)已知扇形的圓心角為120,弧長為6,則扇形的面積是13(2分)(2015常州)如圖,在ABC中,DEBC,AD:DB=1:2,DE=2,則BC的長是14(2分)(2015常州)已知x=2是關于x的方程a(x+1)=a+x的解,則a的值是15(2分)(2015常州)二次函數(shù)y=x2+2x3圖象的頂點坐標是16(2分)(2015常州)如圖是根據(jù)某公園的平面示意圖建立的平面直角坐標系,公園的入口位于坐標原點O,古塔位于點A(400,300),從古塔出發(fā)沿射線OA方向前行300m是盆景園B,從盆景園B向左轉90后直行40
4、0m到達梅花閣C,則點C的坐標是17(2分)(2015常州)數(shù)學家歌德巴赫通過研究下面一系列等式,作出了一個著名的猜想4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;通過這組等式,你發(fā)現(xiàn)的規(guī)律是(請用文字語言表達)18(2分)(2015常州)如圖,在O的內(nèi)接四邊形ABCD中,AB=3,AD=5,BAD=60,點C為弧BD的中點,則AC的長是三、解答題(共10小題,共84分)19(6分)(2015常州)先化簡,再求值:(x+1)2x(2x),其中x=220(8分)(2015常州)解方程和不等
5、式組:(1);(2)21(8分)(2015常州)某調(diào)查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:(1)該調(diào)查小組抽取的樣本容量是多少?(2)求樣本學生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;(3)請估計該市中小學生一天中陽光體育運動的平均時間22(8分)(2015常州)甲,乙,丙三位學生進入了“校園朗誦比賽”冠軍、亞軍和季軍的決賽,他們將通過抽簽來決定比賽的出場順序(1)求甲第一個出場的概率;(2)求甲比乙先出場的概率23(8分)(2015常州)如圖,在ABCD中,BCD=120,分別延長DC、
6、BC到點E,F,使得BCE和CDF都是正三角形(1)求證:AE=AF;(2)求EAF的度數(shù)24(8分)(2015常州)已知某市的光明中學、市圖書館和光明電影院在同一直線上,它們之間的距離如圖所示小張星期天上午帶了75元現(xiàn)金先從光明中學乘出租車去了市圖書館,付費9元;中午再從市圖書館乘出租車去了光明電影院,付費12.6元若該市出租車的收費標準是:不超過3公里計費為m元,3公里后按n元/公里計費(1)求m,n的值,并直接寫出車費y(元)與路程x(公里)(x3)之間的函數(shù)關系式;(2)如果小張這天外出的消費還包括:中午吃飯花費15元,在光明電影院看電影花費25元問小張剩下的現(xiàn)金夠不夠乘出租車從光明電
7、影院返回光明中學?為什么?25(8分)(2015常州)如圖,在四邊形ABCD中,A=C=45,ADB=ABC=105(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB26(10分)(2015常州)設是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與的面積相等(簡稱等積),那么這樣的等積轉化稱為的“化方”(1)閱讀填空如圖,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積理由:連接AH,EHAE為直徑,AHE=90,HAE+HEA=90DHAE,ADH=ED
8、H=90HAD+AHD=90AHD=HED,ADH,即DH2=ADDE又DE=DCDH2=,即正方形DFGH與矩形ABCD等積(2)操作實踐平行四邊形的“化方”思路是,先把平行四邊形轉化為等積的矩形,再把矩形轉化為等積的正方形如圖,請用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡)(3)解決問題三角形的“化方”思路是:先把三角形轉化為等積的(填寫圖形名稱),再轉化為等積的正方形如圖,ABC的頂點在正方形網(wǎng)格的格點上,請作出與ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算ABC面積作圖)(4)拓展探究n邊形(n3)的“化方”思路之一是:把n邊形轉化為等
9、積的n1邊形,直至轉化為等積的三角形,從而可以化方如圖,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖)27(10分)(2015常州)如圖,一次函數(shù)y=x+4的圖象與x軸、y軸分別相交于點A、B,過點A作x軸的垂線l,點P為直線l上的動點,點Q為直線AB與OAP外接圓的交點,點P、Q與點A都不重合(1)寫出點A的坐標;(2)當點P在直線l上運動時,是否存在點P使得OQB與APQ全等?如果存在,求出點P的坐標;如果不存在,請說明理由(3)若點M在直線l上,且POM=90,記OAP外接圓和OAM外接圓的
10、面積分別是S1、S2,求的值28(10分)(2015常州)如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x的圖象交于點A、B,點B的橫坐標是4點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方(1)若點P的坐標是(1,4),直接寫出k的值和PAB的面積;(2)設直線PA、PB與x軸分別交于點M、N,求證:PMN是等腰三角形;(3)設點Q是反比例函數(shù)圖象上位于P、B之間的動點(與點P、B不重合),連接AQ、BQ,比較PAQ與PBQ的大小,并說明理由2015年江蘇省常州市中考數(shù)學試卷參考答案與試題解析一、選擇題(每小題2分,共16分)1(2分)(2015潛江)3的絕對值是()A3B3CD考點:絕
11、對值菁優(yōu)網(wǎng)版權所有分析:根據(jù)一個負數(shù)的絕對值等于它的相反數(shù)得出解答:解:|3|=(3)=3故選:A點評:考查絕對值的概念和求法絕對值規(guī)律總結:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是02(2分)(2015常州)要使分式有意義,則x的取值范圍是()Ax2Bx2Cx2Dx2考點:分式有意義的條件菁優(yōu)網(wǎng)版權所有專題:計算題分析:根據(jù)分式有意義得到分母不為0,即可求出x的范圍解答:解:要使分式有意義,須有x20,即x2,故選D點評:此題考查了分式有意義的條件,分式有意義的條件為:分母不為03(2分)(2015常州)下列“慢行通過,注意危險,禁止行人通行,禁止非機動車通行”四
12、個交通標志圖(黑白陰影圖片)中為軸對稱圖形的是()ABCD考點:軸對稱圖形菁優(yōu)網(wǎng)版權所有分析:根據(jù)軸對稱圖形的概念對各選項分析判斷即可得出答案解答:解:A、不是軸對稱圖形,故本選項錯誤;B、是軸對稱圖形,故本選項正確;C、不是軸對稱圖形,故本選項錯誤;D、不是軸對稱圖形,故本選項錯誤故選:B點評:本題考查了軸對稱圖形,掌握軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合4(2分)(2015常州)如圖,BCAE于點C,CDAB,B=40,則ECD的度數(shù)是()A70B60C50D40考點:平行線的性質;垂線菁優(yōu)網(wǎng)版權所有專題:計算題分析:由BC與AE垂直,得到三角形A
13、BC為直角三角形,利用直角三角形兩銳角互余,求出A的度數(shù),再利用兩直線平行同位角相等即可求出ECD的度數(shù)解答:解:BCAE,ACB=90,在RtABC中,B=40,A=90B=50,CDAB,ECD=A=50,故選C點評:此題考查了平行線的性質,以及垂線,熟練掌握平行線的性質是解本題的關鍵5(2分)(2015常州)如圖,ABCD的對角線AC、BD相交于點O,則下列說法一定正確的是()AAO=ODBAOODCAO=OCDAOAB考點:平行四邊形的性質菁優(yōu)網(wǎng)版權所有分析:根據(jù)平行四邊形的性質:對邊平行且相等,對角線互相平分進行判斷即可解答:解:對角線不一定相等,A錯誤;對角線不一定互相垂直,B錯誤
14、;對角線互相平分,C正確;對角線與邊不一定垂直,D錯誤故選:C點評:本題考查度數(shù)平行四邊形的性質,掌握平行四邊形的對邊平行且相等,對角線互相平分是解題的關鍵6(2分)(2015常州)已知a=,b=,c=,則下列大小關系正確的是()AabcBcbaCbacDacb考點:實數(shù)大小比較菁優(yōu)網(wǎng)版權所有專題:計算題分析:將a,b,c變形后,根據(jù)分母大的反而小比較大小即可解答:解:a=,b=,c=,且,即abc,故選A點評:此題考查了實數(shù)比較大小,將a,b,c進行適當?shù)淖冃问墙獗绢}的關鍵7(2分)(2015常州)已知二次函數(shù)y=x2+(m1)x+1,當x1時,y隨x的增大而增大,而m的取值范圍是()Am=
15、1Bm=3Cm1Dm1考點:二次函數(shù)的性質菁優(yōu)網(wǎng)版權所有分析:根據(jù)二次函數(shù)的性質,利用二次函數(shù)的對稱軸不大于1列式計算即可得解解答:解:拋物線的對稱軸為直線x=,當x1時,y的值隨x值的增大而增大,1,解得m1故選D點評:本題考查了二次函數(shù)的性質,主要利用了二次函數(shù)的增減性,熟記性質并列出不等式是解題的關鍵8(2分)(2015常州)將一張寬為4cm的長方形紙片(足夠長)折疊成如圖所示圖形,重疊部分是一個三角形,則這個三角形面積的最小值是()Acm2B8cm2Ccm2D16cm2考點:翻折變換(折疊問題)菁優(yōu)網(wǎng)版權所有分析:當ACAB時,重疊三角形面積最小,此時ABC是等腰直角三角形,面積為8c
16、m2解答:解:如圖,當ACAB時,三角形面積最小,BAC=90ACB=45AB=AC=4cm,SABC=44=8cm2故選:B點評:本題考查了折疊的性質,發(fā)現(xiàn)當ACAB時,重疊三角形的面積最小是解決問題的關鍵二、填空題(每小題2分,共20分)9(2分)(2015常州)計算(1)0+21=1考點:負整數(shù)指數(shù)冪;零指數(shù)冪菁優(yōu)網(wǎng)版權所有分析:分別根據(jù)零指數(shù)冪,負整數(shù)指數(shù)冪的運算法則計算,然后根據(jù)實數(shù)的運算法則求得計算結果解答:解:(1)0+21=1+=1故答案為:1點評:本題主要考查了零指數(shù)冪,負整數(shù)指數(shù)冪的運算負整數(shù)指數(shù)為正整數(shù)指數(shù)的倒數(shù);任何非0數(shù)的0次冪等于110(2分)(2015常州)太陽半
17、徑約為696 000千米,數(shù)字696 000用科學記數(shù)法表示為6.96105考點:科學記數(shù)法表示較大的數(shù)菁優(yōu)網(wǎng)版權所有專題:應用題分析:科學記數(shù)法的表示形式為a10n的形式,其中1|a|10,n為整數(shù)本題中696 000有6位整數(shù),n=61=5解答:解:696 000=6.96105點評:此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為a10n的形式,其中1|a|10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值11(2分)(2015常州)分解因式:2x22y2=2(x+y)(xy)考點:提公因式法與公式法的綜合運用菁優(yōu)網(wǎng)版權所有分析:先提取公因式2,再根據(jù)平方差公式進行二次分解即可求得答
18、案解答:解:2x22y2=2(x2y2)=2(x+y)(xy)故答案為:2(x+y)(xy)點評:本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底12(2分)(2015常州)已知扇形的圓心角為120,弧長為6,則扇形的面積是27考點:扇形面積的計算菁優(yōu)網(wǎng)版權所有分析:利用弧長公式即可求扇形的半徑,進而利用扇形的面積公式即可求得扇形的面積解答:解:設扇形的半徑為r則=6,解得r=9,扇形的面積=27故答案為:27點評:此題主要考查了扇形面積求法,用到的知識點為:扇形的弧長公式l=;扇形的面積公式S=13(2分)(2015常州)如圖,在ABC中,DEBC
19、,AD:DB=1:2,DE=2,則BC的長是6考點:相似三角形的判定與性質菁優(yōu)網(wǎng)版權所有分析:由平行可得對應線段成比例,即AD:AB=DE:BC,再把數(shù)值代入可求得BC解答:解:DEBC,AD:DB=1:2,DE=2,解得BC=6故答案為:6點評:本題主要考查平行線分線段成比例的性質,掌握平行線分線段成比例中的對應線段是解題的關鍵14(2分)(2015常州)已知x=2是關于x的方程a(x+1)=a+x的解,則a的值是考點:一元一次方程的解菁優(yōu)網(wǎng)版權所有專題:計算題分析:把x=2代入方程計算即可求出a的值解答:解:把x=2代入方程得:3a=a+2,解得:a=故答案為:點評:此題考查了一元一次方程
20、的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值15(2分)(2015常州)二次函數(shù)y=x2+2x3圖象的頂點坐標是(1,2)考點:二次函數(shù)的性質菁優(yōu)網(wǎng)版權所有分析:此題既可以利用y=ax2+bx+c的頂點坐標公式求得頂點坐標,也可以利用配方法求出其頂點的坐標解答:解:y=x2+2x3=(x22x+1)2=(x1)22,故頂點的坐標是(1,2)故答案為(1,2)點評:本題考查了二次函數(shù)的性質,求拋物線的頂點坐標有兩種方法公式法,配方法16(2分)(2015常州)如圖是根據(jù)某公園的平面示意圖建立的平面直角坐標系,公園的入口位于坐標原點O,古塔位于點A(400,300),從古塔出發(fā)沿射線OA方向
21、前行300m是盆景園B,從盆景園B向左轉90后直行400m到達梅花閣C,則點C的坐標是(400,800)考點:勾股定理的應用;坐標確定位置;全等三角形的應用菁優(yōu)網(wǎng)版權所有分析:根據(jù)題意結合全等三角形的判定與性質得出AODACB(SAS),進而得出C,A,D也在一條直線上,求出CD的長即可得出C點坐標解答:解:連接AC,由題意可得:AB=300m,BC=400m,在AOD和ACB中,AODACB(SAS),CAB=OAD,B、O在一條直線上,C,A,D也在一條直線上,AC=AO=500m,則CD=AC=AD=800m,C點坐標為:(400,800)故答案為:(400,800)點評:此題主要考查了
22、全等三角形的判定與性質以及勾股定理,得出C,A,D也在一條直線上是解題關鍵17(2分)(2015常州)數(shù)學家歌德巴赫通過研究下面一系列等式,作出了一個著名的猜想4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;通過這組等式,你發(fā)現(xiàn)的規(guī)律是所有大于2的偶數(shù)都可以寫成兩個素數(shù)之和(請用文字語言表達)考點:規(guī)律型:數(shù)字的變化類菁優(yōu)網(wǎng)版權所有分析:根據(jù)以上等式得出規(guī)律進行解答即可解答:解:此規(guī)律用文字語言表達為:所有大于2的偶數(shù)都可以寫成兩個素數(shù)之和,故答案為:所有大于2的偶數(shù)都可以寫成兩個素數(shù)之和
23、點評:此題考查規(guī)律問題,關鍵是根據(jù)幾個等式尋找規(guī)律再用文字表達即可18(2分)(2015常州)如圖,在O的內(nèi)接四邊形ABCD中,AB=3,AD=5,BAD=60,點C為弧BD的中點,則AC的長是考點:全等三角形的判定與性質;勾股定理;圓心角、弧、弦的關系;圓周角定理菁優(yōu)網(wǎng)版權所有分析:過C作CEAB于E,CFAD于F,得出E=CFD=CFA=90,推出=,求出BAC=DAC,BC=CD,求出CE=CF,根據(jù)圓內(nèi)接四邊形性質求出D=CBE,證CBECDF,推出BE=DF,證AECAFC,推出AE=AF,設BE=DF=x,得出5=x+3+x,求出x,解直角三角形求出即可解答:解:過C作CEAB于E
24、,CFAD于F,則E=CFD=CFA=90,點C為弧BD的中點,=,BAC=DAC,BC=CD,CEAB,CFAD,CE=CF,A、B、C、D四點共圓,D=CBE,在CBE和CDF中CBECDF,BE=DF,在AEC和AFC中AECAFC,AE=AF,設BE=DF=x,AB=3,AD=5,AE=AF=x+3,5=x+3+x,解得:x=1,即AE=4,AC=,故答案為:點評:本題考查了圓心角、弧、弦之間的關系,圓內(nèi)接四邊形性質,解直角三角形,全等三角形的性質和判定的應用,能正確作出輔助線是解此題的關鍵,綜合性比較強,難度適中三、解答題(共10小題,共84分)19(6分)(2015常州)先化簡,再
25、求值:(x+1)2x(2x),其中x=2考點:整式的混合運算化簡求值菁優(yōu)網(wǎng)版權所有專題:計算題分析:原式第一項利用完全平方公式化簡,第二項利用單項式乘以多項式法則計算,去括號合并得到最簡結果,把x的值代入計算即可求出值解答:解:原式=x2+2x+12x+x2=2x2+1,當x=2時,原式=8+1=9點評:此題考查了整式的混合運算化簡求值,熟練掌握運算法則是解本題的關鍵20(8分)(2015常州)解方程和不等式組:(1);(2)考點:解分式方程;解一元一次不等式組菁優(yōu)網(wǎng)版權所有專題:計算題分析:(1)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;(2)分別
26、求出不等式組中兩不等式的解集,找出解集的公共部分即可求出解集解答:解:(1)去分母得:x=6x2+1,解得:x=,經(jīng)檢驗x=是分式方程的解;(2),由得:x2,由得:x3,則不等式組的解集為2x3點評:此題考查了解分式方程,以及解一元一次不等式組,熟練掌握運算法則是解本題的關鍵21(8分)(2015常州)某調(diào)查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調(diào)查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:(1)該調(diào)查小組抽取的樣本容量是多少?(2)求樣本學生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;(3)請估計該市中小學生一天中陽光體育運動的平均時間
27、考點:頻數(shù)(率)分布直方圖;扇形統(tǒng)計圖;加權平均數(shù)菁優(yōu)網(wǎng)版權所有分析:(1)利用0.5小時的人數(shù)為:100人,所占比例為:20%,即可求出樣本容量;(2)利用樣本容量乘以1.5小時的百分數(shù),即可求出1.5小時的人數(shù),畫圖即可;(3)計算出該市中小學生一天中陽光體育運動的平均時間即可解答:解:(1)由題意可得:0.5小時的人數(shù)為:100人,所占比例為:20%,本次調(diào)查共抽樣了500名學生; (2)1.5小時的人數(shù)為:5002.4=120(人)如圖所示:(3)根據(jù)題意得:,即該市中小學生一天中陽光體育運動的平均時間約1小時點評:此題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖的應用,根據(jù)統(tǒng)計圖得出正確信息是
28、解題關鍵22(8分)(2015常州)甲,乙,丙三位學生進入了“校園朗誦比賽”冠軍、亞軍和季軍的決賽,他們將通過抽簽來決定比賽的出場順序(1)求甲第一個出場的概率;(2)求甲比乙先出場的概率考點:列表法與樹狀圖法菁優(yōu)網(wǎng)版權所有專題:計算題分析:(1)畫樹狀圖得出所有等可能的情況數(shù),找出甲第一個出場的情況數(shù),即可求出所求的概率;(2)找出甲比乙先出場的情況數(shù),即可求出所求的概率解答:解:(1)畫樹狀圖如下:所有等可能的情況有6種,其中甲第一個出場的情況有2種,則P(甲第一個出場)=;(2)甲比乙先出場的情況有3種,則P(甲比乙先出場)=點評:此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情
29、況數(shù)與總情況數(shù)之比23(8分)(2015常州)如圖,在ABCD中,BCD=120,分別延長DC、BC到點E,F,使得BCE和CDF都是正三角形(1)求證:AE=AF;(2)求EAF的度數(shù)考點:全等三角形的判定與性質;等邊三角形的性質;平行四邊形的性質菁優(yōu)網(wǎng)版權所有分析:(1)由平行四邊形的性質得出BAD=BCD=120,ABC=ADC,AB=CD,BC=AD,由等邊三角形的性質得出BE=BC,DF=CD,EBC=CDF=60,證出ABE=FDA,AB=DF,BE=AD,根據(jù)SAS證明ABEFDA,得出對應邊相等即可;(2)由全等三角形的性質得出AEB=FAD,求出AEB+BAE=60,得出FA
30、D+BAE=60,即可得出EAF的度數(shù)解答:(1)證明:四邊形ABCD是平行四邊形,BAD=BCD=120,ABC=ADC,AB=CD,BC=AD,BCE和CDF都是正三角形,BE=BC,DF=CD,EBC=CDF=60,ABE=FDA,AB=DF,BE=AD,在ABE和FDA中,ABEFDA(SAS),AE=AF;(2)解:ABEFDA,AEB=FAD,ABE=60+60=120,AEB+BAE=60,FAD+BAE=60,EAF=12060=60點評:本題考查了平行四邊形的性質、等邊三角形的性質、全等三角形的判定與性質;熟練掌握平行四邊形和等邊三角形的性質,證明三角形全等是解決問題的關鍵2
31、4(8分)(2015常州)已知某市的光明中學、市圖書館和光明電影院在同一直線上,它們之間的距離如圖所示小張星期天上午帶了75元現(xiàn)金先從光明中學乘出租車去了市圖書館,付費9元;中午再從市圖書館乘出租車去了光明電影院,付費12.6元若該市出租車的收費標準是:不超過3公里計費為m元,3公里后按n元/公里計費(1)求m,n的值,并直接寫出車費y(元)與路程x(公里)(x3)之間的函數(shù)關系式;(2)如果小張這天外出的消費還包括:中午吃飯花費15元,在光明電影院看電影花費25元問小張剩下的現(xiàn)金夠不夠乘出租車從光明電影院返回光明中學?為什么?考點:一次函數(shù)的應用菁優(yōu)網(wǎng)版權所有分析:(1)根據(jù)題意,不超過3公
32、里計費為m元,由圖示可知光明中學和市圖書館相距2公里,可由此得出m,由出租車的收費標準是:不超過3公里計費為m元,3公里后按n元/公里計費當x3時,由收費與路程之間的關系就可以求出結論;(2)分別計算小張所剩錢數(shù)和返程所需錢數(shù),即可得出結論解答:解:(1)由圖示可知光明中學和市圖書館相距2公里,付費9元,m=9,從市圖書館乘出租車去光明電影院,路程5公里,付費12.6元,(53)n+9=12.6,解得:n=1.8車費y(元)與路程x(公里)(x3)之間的函數(shù)關系式為:y=1.8(x3)+9=1.8x+3.6(x3)(2)小張剩下坐車的錢數(shù)為:751525912.6=13.4(元),乘出租車從光
33、明電影院返回光明中學的費用:1.87+3.6=16.2(元)13.416.2,故小張剩下的現(xiàn)金不夠乘出租車從光明電影院返回光明中學點評:本題考查了分段函數(shù),一次函數(shù)的解析式,由一次含數(shù)的解析式求自變量和函數(shù)值,解答時求出函數(shù)的解析式是關鍵25(8分)(2015常州)如圖,在四邊形ABCD中,A=C=45,ADB=ABC=105(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB考點:勾股定理;含30度角的直角三角形;等腰直角三角形菁優(yōu)網(wǎng)版權所有分析:(1)在四邊形ABCD中,由A=C=45,ADB=ABC=105,得BDF=ADCADB=165105=60,ADE與BCF為等腰直角三角
34、形,求得AE,利用銳角三角函數(shù)得BE,得AB;(2)設DE=x,利用(1)的某些結論,特殊角的三角函數(shù)和勾股定理,表示AB,CD,得結果解答:解:(1)過A點作DEAB,過點B作BFCD,A=C=45,ADB=ABC=105,ADC=360ACABC=3604545105=165,BDF=ADCADB=165105=60,ADE與BCF為等腰直角三角形,AD=2,AE=DE=,ABC=105,ABD=1054530=30,BE=,AB=;(2)設DE=x,則AE=x,BE=,BD=2x,BDF=60,DBF=30,DF=x,BF=,CF=,AB=AE+BE=,CD=DF+CF=x,AB+CD=
35、2+2,AB=+1點評:本題考查了勾股定理、等腰直角三角形的判定和性質、含有30角的直角三角形的性質,解題的關鍵是作輔助線DE、BF,構造直角三角形,求出相應角的度數(shù)26(10分)(2015常州)設是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與的面積相等(簡稱等積),那么這樣的等積轉化稱為的“化方”(1)閱讀填空如圖,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積理由:連接AH,EHAE為直徑,AHE=90,HAE+HEA=90DHAE,ADH=EDH=90H
36、AD+AHD=90AHD=HED,ADHHDE,即DH2=ADDE又DE=DCDH2=ADDC,即正方形DFGH與矩形ABCD等積(2)操作實踐平行四邊形的“化方”思路是,先把平行四邊形轉化為等積的矩形,再把矩形轉化為等積的正方形如圖,請用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡)(3)解決問題三角形的“化方”思路是:先把三角形轉化為等積的矩形(填寫圖形名稱),再轉化為等積的正方形如圖,ABC的頂點在正方形網(wǎng)格的格點上,請作出與ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算ABC面積作圖)(4)拓展探究n邊形(n3)的“化方”思路之一是:把n邊形
37、轉化為等積的n1邊形,直至轉化為等積的三角形,從而可以化方如圖,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖)考點:相似形綜合題菁優(yōu)網(wǎng)版權所有分析:(1)首先根據(jù)相似三角形的判定方法,可得ADHHDE;然后根據(jù)等量代換,可得DH2=ADDC,據(jù)此判斷即可(2)首先把平行四邊形ABCD轉化為等積的矩形ADMN,然后延長AD到E,使DE=DM,以AE為直徑作半圓延長MD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABMN等積,所以正方形DFGH與平行四邊形ABCD等積,據(jù)此解答即可
38、(3)首先以三角形的底為矩形的長,以三角形的高的一半為矩形的寬,將ABC轉化為等積的矩形MBCD;然后延長MD到E,使DE=DC,以ME為直徑作半圓延長CD交半圓于點H,則DH即為與ABC等積的正方形的一條邊(4)首先根據(jù)AGEH,判斷出AG=2EH,然后根據(jù)CF=2DF,可得CFEH=DFAG,據(jù)此判斷出SCEF=SADF,SCDI=SAEI,所以SBCE=S四邊形ABCD,即BCE與四邊形ABCD等積,據(jù)此解答即可解答:解:(1)如圖,連接AH,EH,AE為直徑,AHE=90,HAE+HEA=90DHAE,ADH=EDH=90,HAD+AHD=90,AHD=HED,ADHHDE,即DH2=
39、ADDE又DE=DC,DH2=ADDC,即正方形DFGH與矩形ABCD等積(2)如圖,延長AD到E,使DE=DM,連接AH,EH,矩形ADMN的長和寬分別等于平行四邊形ABCD的底和高,矩形ADMN的面積等于平行四邊形ABCD的面積,AE為直徑,AHE=90,HAE+HEA=90DHAE,ADH=EDH=90,HAD+AHD=90,AHD=HED,ADHHDE,即DH2=ADDE又DE=DM,DH2=ADDM,即正方形DFGH與矩形ABMN等積,正方形DFGH與平行四邊形ABCD等積(3)如圖,延長MD到E,使DE=DC,連接MH,EH,矩形MDBC的長等于ABC的底,矩形MDBC的寬等于AB
40、C的高的一半,矩形MDBC的面積等于ABC的面積,ME為直徑,MHE=90,HME+HEM=90DHME,MDH=EDH=90,HMD+MHD=90,MHD=HED,MDHHDE,即DH2=MDDE又DE=DC,DH2=MDDC,DH即為與ABC等積的正方形的一條邊(4)如圖,延長BA、CD交于點F,作AGCF于點G,EHCF于點H,BCE與四邊形ABCD等積,理由如下:AGEH,AG=2EH,又CF=2DF,CFEH=DFAG,SCEF=SADF,SCDI=SAEI,SBCE=S四邊形ABCD,即BCE與四邊形ABCD等積故答案為:HDE、ADDC、矩形點評:(1)此題主要考查了相似形綜合題
41、,考查了分析推理能力,考查了分類討論思想的應用,考查了數(shù)形結合思想的應用,要熟練掌握(2)此題還考查了矩形、三角形的面積的求法,以及對等積轉化的理解,要熟練掌握27(10分)(2015常州)如圖,一次函數(shù)y=x+4的圖象與x軸、y軸分別相交于點A、B,過點A作x軸的垂線l,點P為直線l上的動點,點Q為直線AB與OAP外接圓的交點,點P、Q與點A都不重合(1)寫出點A的坐標;(2)當點P在直線l上運動時,是否存在點P使得OQB與APQ全等?如果存在,求出點P的坐標;如果不存在,請說明理由(3)若點M在直線l上,且POM=90,記OAP外接圓和OAM外接圓的面積分別是S1、S2,求的值考點:圓的綜
42、合題菁優(yōu)網(wǎng)版權所有分析:(1)將y=0代入y=x+4,求得x的值,從而得到點A的坐標;(2)首先根據(jù)題意畫出圖形,然后在RtBOA中,由勾股定理得:AB的長度,然后由全等三角形的性質求得QA的長度,從而得到BQ的長,然后根據(jù)PA=BQ求得PA的長度,從而可求得點P的坐標;(3)首先根據(jù)題意畫出圖形,設AP=m,由OAMPAO,可求得AM的長度,然后根據(jù)勾股定理可求得兩圓的直徑(用含m的式子表示),然后利用圓的面積公式求得兩圓的面積,最后代入所求代數(shù)式求解即可解答:解(1)令y=0,得:x+4=0,解得x=4,所以點A的坐標為(4,0);(2)存在理由:如圖下圖所示:將x=0代入y=x+4得:y
43、=4,OB=4,由(1)可知OA=4,在RtBOA中,由勾股定理得:AB=4BOQAQPQA=OB=4,BQ=PABQ=ABAQ=44,PA=44點P的坐標為(4,44)(3)如下圖所示:OPOM,1+3=90又2+1=90,2=3又OAP=OAM=90,OAMPAO,設AP=m,則:,AM=在RtOAP中,PO=,S1=,在RtOAM中,OM=,S2=,=+=1+=點評:本題主要考查的是全等三角形的性質,相似三角形的性質和判定以及勾股定理和一次函數(shù)的綜合應用,根據(jù)題意畫出圖形,利用全等三角形和相似三角形的性質和判定求得AM和PA的長度是解題的關鍵28(10分)(2015常州)如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x的圖象交于點A、B,點B的橫坐標是4點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方(1)若點P的坐標是(1,4),直接寫出k的值和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024酒店大堂裝飾項目施工協(xié)議
- 課程設計電動機效率
- 智慧城市建設管理信息系統(tǒng)開發(fā)合同
- 高端淋浴房產(chǎn)品銷售與售后服務協(xié)議樣本
- 人工智能輔助診斷軟件研發(fā)合同
- 美術機構工作室課程設計
- 2024年場地出租協(xié)議詳細格式范本
- 氣息發(fā)聲訓練課程設計
- 果凍感官評定課程設計
- 高潔凈度車間裝修承包協(xié)議2024年
- 《人工智能基礎》課件-AI的前世今生:她從哪里來
- 2023年12月英語四級真題及答案-第2套
- 《正確對待外來文化》名師課件
- 中醫(yī)食療藥膳學智慧樹知到答案2024年四川護理職業(yè)學院
- 工程圖學(天津大學)智慧樹知到期末考試答案章節(jié)答案2024年天津大學
- 當代社會政策分析 課件 第十一章 殘疾人社會政策
- 家政公司未來發(fā)展計劃方案
- ISO28000:2022供應鏈安全管理體系
- 家校攜手 同心共育 四年期中考試家長會 課件
- 企業(yè)檔案管理辦法培訓
- 《室內(nèi)設計基礎》課件
評論
0/150
提交評論