2024屆四川省廣元市劍閣縣中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
2024屆四川省廣元市劍閣縣中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
2024屆四川省廣元市劍閣縣中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
2024屆四川省廣元市劍閣縣中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
2024屆四川省廣元市劍閣縣中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆四川省廣元市劍閣縣中考數(shù)學(xué)模擬預(yù)測題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.學(xué)校為創(chuàng)建“書香校園”購買了一批圖書.已知購買科普類圖書花費(fèi)10000元,購買文學(xué)類圖書花費(fèi)9000元,其中科普類圖書平均每本的價格比文學(xué)類圖書平均每本的價格貴5元,且購買科普書的數(shù)量比購買文學(xué)書的數(shù)量少100本.求科普類圖書平均每本的價格是多少元?若設(shè)科普類圖書平均每本的價格是x元,則可列方程為()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1002.的值是A. B. C. D.3.圓錐的底面半徑為2,母線長為4,則它的側(cè)面積為()A.8π B.16π

C.4π D.4π4.如圖,在⊙O中,O為圓心,點(diǎn)A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°5.甲、乙、丙、丁四名射擊運(yùn)動員進(jìn)行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績?nèi)鐖D所示,丙、丁二人的成績?nèi)绫硭荆蕴幻\(yùn)動員,從平均數(shù)和方差兩個因素分析,應(yīng)淘汰()丙丁平均數(shù)88方差1.21.8A.甲 B.乙 C.丙 D.丁6.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=07.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°8.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.9.對于一組統(tǒng)計(jì)數(shù)據(jù)1,1,6,5,1.下列說法錯誤的是()A.眾數(shù)是1 B.平均數(shù)是4 C.方差是1.6 D.中位數(shù)是610.由6個大小相同的正方體搭成的幾何體如圖所示,比較它的正視圖、左視圖和俯視圖的面積,則()A.三個視圖的面積一樣大 B.主視圖的面積最小C.左視圖的面積最小 D.俯視圖的面積最小11.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側(cè)面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm212.如圖,已知AB∥DE,∠ABC=80°,∠CDE=140°,則∠C=()A.50° B.40° C.30° D.20°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點(diǎn)D、E分別為AM、AB上的動點(diǎn),則BD+DE的最小值是_____.14.在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(-1,2).作點(diǎn)A關(guān)于x軸的對稱點(diǎn),得到點(diǎn)A1,再將點(diǎn)A1向下平移4個單位,得到點(diǎn)A2,則點(diǎn)A2的坐標(biāo)是_________.15.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號都填上)16.如圖,甲、乙兩船同時從港口出發(fā),甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達(dá)點(diǎn)C,乙船正好到達(dá)甲船正西方向的點(diǎn)B,則乙船的航程為______海里(結(jié)果保留根號).17.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機(jī)摸出兩球,都是紅球的概率為_________.18.在△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D,E,F分別是邊AB,AC,BC的中點(diǎn),則三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.求拋物線y=ax2+2x+c的解析式:;點(diǎn)D為拋物線上對稱軸右側(cè)、x軸上方一點(diǎn),DE⊥x軸于點(diǎn)E,DF∥AC交拋物線對稱軸于點(diǎn)F,求DE+DF的最大值;①在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;②點(diǎn)Q在拋物線對稱軸上,其縱坐標(biāo)為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.20.(6分)如圖,已知AB是圓O的直徑,F(xiàn)是圓O上一點(diǎn),∠BAF的平分線交⊙O于點(diǎn)E,交⊙O的切線BC于點(diǎn)C,過點(diǎn)E作ED⊥AF,交AF的延長線于點(diǎn)D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點(diǎn)G為AE上一點(diǎn),求OG+EG最小值.21.(6分)如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A(2,5)在反比例函數(shù)的圖象上,過點(diǎn)A的直線y=x+b交x軸于點(diǎn)B.求k和b的值;求△OAB的面積.22.(8分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE∶CE=3∶2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運(yùn)動,過點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.(1)線段AE=______;(2)設(shè)點(diǎn)P的運(yùn)動時間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當(dāng)t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.23.(8分)計(jì)算:2sin30°﹣(π﹣)0+|﹣1|+()﹣124.(10分)(1)(問題發(fā)現(xiàn))小明遇到這樣一個問題:如圖1,△ABC是等邊三角形,點(diǎn)D為BC的中點(diǎn),且滿足∠ADE=60°,DE交等邊三角形外角平分線CE所在直線于點(diǎn)E,試探究AD與DE的數(shù)量關(guān)系.(1)小明發(fā)現(xiàn),過點(diǎn)D作DF//AC,交AC于點(diǎn)F,通過構(gòu)造全等三角形,經(jīng)過推理論證,能夠使問題得到解決,請直接寫出AD與DE的數(shù)量關(guān)系:;(2)(類比探究)如圖2,當(dāng)點(diǎn)D是線段BC上(除B,C外)任意一點(diǎn)時(其它條件不變),試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.(3)(拓展應(yīng)用)當(dāng)點(diǎn)D在線段BC的延長線上,且滿足CD=BC(其它條件不變)時,請直接寫出△ABC與△ADE的面積之比.25.(10分)請根據(jù)圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)26.(12分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點(diǎn)A、出水口B和點(diǎn)落水點(diǎn)C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=

,cos37°=

,tan37°=

(1)求把手端點(diǎn)A到BD的距離;

(2)求CH的長.

27.(12分)如圖1,已知扇形MON的半徑為,∠MON=90°,點(diǎn)B在弧MN上移動,聯(lián)結(jié)BM,作OD⊥BM,垂足為點(diǎn)D,C為線段OD上一點(diǎn),且OC=BM,聯(lián)結(jié)BC并延長交半徑OM于點(diǎn)A,設(shè)OA=x,∠COM的正切值為y.(1)如圖2,當(dāng)AB⊥OM時,求證:AM=AC;(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)當(dāng)△OAC為等腰三角形時,求x的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】【分析】直接利用購買科普書的數(shù)量比購買文學(xué)書的數(shù)量少100本得出等式進(jìn)而得出答案.【詳解】科普類圖書平均每本的價格是x元,則可列方程為:﹣=100,故選B.【點(diǎn)睛】本題考查了分式方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.2、D【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:,故選:D.【點(diǎn)睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.3、A【解析】

解:底面半徑為2,底面周長=4π,側(cè)面積=×4π×4=8π,故選A.4、B【解析】

根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計(jì)算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點(diǎn)睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.5、D【解析】

求出甲、乙的平均數(shù)、方差,再結(jié)合方差的意義即可判斷.【詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數(shù)為8,方差為1.2,丁的平均數(shù)為8,方差為1.8,故4個人的平均數(shù)相同,方差丁最大.故應(yīng)該淘汰?。蔬xD.【點(diǎn)睛】本題考查方差、平均數(shù)、折線圖等知識,解題的關(guān)鍵是記住平均數(shù)、方差的公式.6、D【解析】試題解析:含有兩個未知數(shù),不是整式方程,C沒有二次項(xiàng).故選D.點(diǎn)睛:一元二次方程需要滿足三個條件:含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,整式方程.7、A【解析】試題分析:根據(jù)五邊形的內(nèi)角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進(jìn)一步求得∠P的度數(shù).解:∵五邊形的內(nèi)角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內(nèi)相交于點(diǎn)O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點(diǎn):多邊形內(nèi)角與外角;三角形內(nèi)角和定理.8、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點(diǎn):簡單組合體的三視圖9、D【解析】

根據(jù)中位數(shù)、眾數(shù)、方差等的概念計(jì)算即可得解.【詳解】A、這組數(shù)據(jù)中1都出現(xiàn)了1次,出現(xiàn)的次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,此選項(xiàng)正確;B、由平均數(shù)公式求得這組數(shù)據(jù)的平均數(shù)為4,故此選項(xiàng)正確;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此選項(xiàng)正確;D、將這組數(shù)據(jù)按從大到校的順序排列,第1個數(shù)是1,故中位數(shù)為1,故此選項(xiàng)錯誤;故選D.考點(diǎn):1.眾數(shù);2.平均數(shù);1.方差;4.中位數(shù).10、C【解析】試題分析:根據(jù)三視圖的意義,可知正視圖由5個面,左視圖有3個面,俯視圖有4個面,故可知主視圖的面積最大.故選C考點(diǎn):三視圖11、C【解析】圓錐的側(cè)面積=底面周長×母線長÷2,把相應(yīng)數(shù)值代入,圓錐的側(cè)面積=2π×2×5÷2=10π.故答案為C12、B【解析】試題解析:延長ED交BC于F,∵AB∥DE,∴在△CDF中,故故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、8【解析】試題分析:過B點(diǎn)作于點(diǎn),與交于點(diǎn),根據(jù)三角形兩邊之和小于第三邊,可知的最小值是線的長,根據(jù)勾股定理列出方程組即可求解.過B點(diǎn)作于點(diǎn),與交于點(diǎn),設(shè)AF=x,,,,(負(fù)值舍去).故BD+DE的值是8故答案為8考點(diǎn):軸對稱-最短路線問題.14、(-1,-6)【解析】

直接利用關(guān)于x軸對稱點(diǎn)的性質(zhì)得出點(diǎn)A1坐標(biāo),再利用平移的性質(zhì)得出答案.【詳解】∵點(diǎn)A的坐標(biāo)是(-1,2),作點(diǎn)A關(guān)于x軸的對稱點(diǎn),得到點(diǎn)A1,

∴A1(-1,-2),

∵將點(diǎn)A1向下平移4個單位,得到點(diǎn)A2,

∴點(diǎn)A2的坐標(biāo)是:(-1,-6).

故答案為:(-1,-6).【點(diǎn)睛】解決本題的關(guān)鍵是掌握好對稱點(diǎn)的坐標(biāo)規(guī)律:(1)關(guān)于x軸對稱的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);(2)關(guān)于y軸對稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);(3)關(guān)于原點(diǎn)對稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).15、①②④【解析】

①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;

②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設(shè)BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點(diǎn)睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計(jì)算,綜合性較強(qiáng).16、10海里.【解析】

本題可以求出甲船行進(jìn)的距離AC,根據(jù)三角函數(shù)就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達(dá)甲船正西方向的B點(diǎn),∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點(diǎn)睛】本題主要考查的是解直角三角形的應(yīng)用-方向角問題及三角函數(shù)的定義,理解方向角的定義是解決本題的關(guān)鍵.17、【解析】

先畫出樹狀圖,用隨意摸出兩個球是紅球的結(jié)果個數(shù)除以所有可能的結(jié)果個數(shù)即可.【詳解】∵從中隨意摸出兩個球的所有可能的結(jié)果個數(shù)是12,隨意摸出兩個球是紅球的結(jié)果個數(shù)是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.18、6【解析】

首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【點(diǎn)睛】本題考查了勾股定理和三角形中位線定理.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標(biāo)為(,)或(,);②<t<.【解析】

(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),根據(jù)系數(shù)的關(guān)系,即可解答(2)先求出當(dāng)x=0時,C的坐標(biāo),設(shè)直線AC的解析式為y=px+q,把A,C的坐標(biāo)代入即可求出AC的解析式,過D作DG垂直拋物線對稱軸于點(diǎn)G,設(shè)D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P1,求出直線PC的解析式,再結(jié)合拋物線的解析式可求出P1,過點(diǎn)A作AC的垂線交拋物線于另一點(diǎn)P2,再利用A的坐標(biāo)求出P2,即可解答②觀察函數(shù)圖象與△ACQ為銳角三角形時的情況,即可解答【詳解】解:(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當(dāng)x=0時,y=﹣x2+2x+3=3,則C(0,3),設(shè)直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過D作DG垂直拋物線對稱軸于點(diǎn)G,設(shè)D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當(dāng)x=,DE+DF有最大值為;答圖1答圖2(3)①存在;如答圖2,過點(diǎn)C作AC的垂線交拋物線于另一點(diǎn)P1,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設(shè)為y=x+m,把C(0,3)代入得m=3,∴直線P1C的解析式為y=x+3,解方程組,解得或,則此時P1點(diǎn)坐標(biāo)為(,);過點(diǎn)A作AC的垂線交拋物線于另一點(diǎn)P2,直線AP2的解析式可設(shè)為y=x+n,把A(﹣1,0)代入得n=,∴直線PC的解析式為y=,解方程組,解得或,則此時P2點(diǎn)坐標(biāo)為(,),綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(,)或(,);②<t<.【點(diǎn)睛】此題考查二次函數(shù)綜合題,解題關(guān)鍵在于把已知點(diǎn)代入解析式求值和作輔助線.20、(1)證明見解析(2)①②3【解析】

(1)作輔助線,連接OE.根據(jù)切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據(jù)BC、DE兩切線的性質(zhì)證明△ADE∽△BEC;又由角平分線的性質(zhì)、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點(diǎn)G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點(diǎn)之間線段最短,當(dāng)F、G、M三點(diǎn)共線,OG+EG=GF+GM=FM最小,此時FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設(shè)BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點(diǎn)G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點(diǎn)之間線段最短,當(dāng)F、G、M三點(diǎn)共線,OG+EG=GF+GM=FM最小,此時FM=FOsin60o=3.故OG+EG最小值是3.【點(diǎn)睛】本題考查了切線的性質(zhì)、相似三角形的判定與性質(zhì).比較復(fù)雜,解答此題的關(guān)鍵是作出輔助線,利用數(shù)形結(jié)合解答.21、(1)k=10,b=3;(2).【解析】試題分析:(1)、將A點(diǎn)坐標(biāo)代入反比例函數(shù)解析式和一次函數(shù)解析式分別求出k和b的值;(2)、首先根據(jù)一次函數(shù)求出點(diǎn)B的坐標(biāo),然后計(jì)算面積.試題解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴當(dāng)y=0時,x=-3,∴OB=3∴S=×3×5=7.5考點(diǎn):一次函數(shù)與反比例函數(shù)的綜合問題.22、(1)5;(2);(3)時,半徑PF=;t=16,半徑PF=12.【解析】

(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當(dāng)點(diǎn)P在線段AB上運(yùn)動時,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當(dāng)點(diǎn)P在射線AB上運(yùn)動時,即t>4,此時,EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時,PF=FG,分以下三種情況:①當(dāng)t=0或t=4時,顯然符合條件的⊙F不存在;②當(dāng)0<t<4時,如解圖1,作FG⊥BC于點(diǎn)G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時⊙F的半徑PF=;③當(dāng)t>4時,如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時⊙F的半徑PF=12.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,動點(diǎn)的函數(shù)為題,切線的性質(zhì),相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想.解題的關(guān)鍵是熟練掌握切線的性質(zhì)、矩形的性質(zhì)及相似三角形的判定與性質(zhì).23、1+【解析】分析:直接利用特殊角的三角函數(shù)值以及零指數(shù)冪的性質(zhì)和負(fù)指數(shù)冪的性質(zhì)分別化簡得出答案.詳解:原式=2×-1+-1+2=1+.點(diǎn)睛:此題主要考查了實(shí)數(shù)運(yùn)算,正確化簡各數(shù)是解題關(guān)鍵.24、(1)AD=DE;(2)AD=DE,證明見解析;(3).【解析】試題分析:本題難度中等.主要考查學(xué)生對探究例子中的信息進(jìn)行歸納總結(jié).并能夠結(jié)合三角形的性質(zhì)是解題關(guān)鍵.試題解析:(10分)(1)AD=DE.(2)AD=DE.證明:如圖2,過點(diǎn)D作DF//AC,交AC于點(diǎn)F,∵△ABC是等邊三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等邊三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分線,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3).考點(diǎn):1.等邊三角形探究題;2.全等三角形的判定與性質(zhì);3.等邊三角形的判定與性質(zhì).25、(1)一個水瓶40元,一個水杯是8元;(2)當(dāng)10<n<25時,選擇乙商場購買更合算.當(dāng)n>25時,選擇甲商場購買更合算.【解析】

(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;(2)計(jì)算出兩商場得費(fèi)用,比較即可得到結(jié)果.【詳解】解:(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費(fèi)用為(40×5+8n)×80%=160+6.4n乙商場所需費(fèi)用為5×40+(n﹣5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論