




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)益陽(yáng)師范高等專科學(xué)校
《機(jī)器學(xué)習(xí)與模式識(shí)別課程設(shè)計(jì)I》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)2、在機(jī)器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測(cè)一個(gè)城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.對(duì)原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計(jì)算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對(duì)目標(biāo)變量有顯著影響的特征,去除冗余或無(wú)關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進(jìn)行一次,后續(xù)不需要再進(jìn)行調(diào)整和優(yōu)化3、假設(shè)正在進(jìn)行一個(gè)特征選擇任務(wù),需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標(biāo)變量之間的相關(guān)性?()A.過(guò)濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以4、機(jī)器學(xué)習(xí)在圖像識(shí)別領(lǐng)域也取得了巨大的成功。以下關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于圖像分類、目標(biāo)檢測(cè)、圖像分割等任務(wù)。常見(jiàn)的圖像識(shí)別算法有卷積神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)通過(guò)卷積層和池化層自動(dòng)學(xué)習(xí)圖像的特征表示B.支持向量機(jī)在圖像識(shí)別中的性能通常不如卷積神經(jīng)網(wǎng)絡(luò)C.圖像識(shí)別算法的性能主要取決于數(shù)據(jù)的質(zhì)量和數(shù)量,與算法本身關(guān)系不大D.機(jī)器學(xué)習(xí)在圖像識(shí)別中的應(yīng)用還面臨著一些挑戰(zhàn),如小樣本學(xué)習(xí)、對(duì)抗攻擊等5、在機(jī)器學(xué)習(xí)中,降維是一種常見(jiàn)的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是6、假設(shè)正在比較不同的聚類算法,用于對(duì)一組沒(méi)有標(biāo)簽的客戶數(shù)據(jù)進(jìn)行分組。如果數(shù)據(jù)分布不規(guī)則且存在不同密度的簇,以下哪種聚類算法可能更適合?()A.K-Means算法B.層次聚類算法C.密度聚類算法(DBSCAN)D.均值漂移聚類算法7、在一個(gè)股票價(jià)格預(yù)測(cè)的場(chǎng)景中,需要根據(jù)歷史的股票價(jià)格、成交量、公司財(cái)務(wù)指標(biāo)等數(shù)據(jù)來(lái)預(yù)測(cè)未來(lái)的價(jià)格走勢(shì)。數(shù)據(jù)具有非線性、非平穩(wěn)和高噪聲的特點(diǎn)。以下哪種方法可能是最合適的?()A.傳統(tǒng)的線性回歸方法,簡(jiǎn)單直觀,但無(wú)法處理非線性關(guān)系B.支持向量回歸(SVR),對(duì)非線性數(shù)據(jù)有一定處理能力,但對(duì)高噪聲數(shù)據(jù)可能效果不佳C.隨機(jī)森林回歸,能夠處理非線性和高噪聲數(shù)據(jù),但解釋性較差D.基于深度學(xué)習(xí)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),對(duì)時(shí)間序列數(shù)據(jù)有較好的建模能力,但容易過(guò)擬合8、在自然語(yǔ)言處理任務(wù)中,如文本分類,詞向量表示是基礎(chǔ)。常見(jiàn)的詞向量模型有Word2Vec和GloVe等。假設(shè)我們有一個(gè)大量的文本數(shù)據(jù)集,想要得到高質(zhì)量的詞向量表示,同時(shí)考慮到計(jì)算效率和效果。以下關(guān)于這兩種詞向量模型的比較,哪一項(xiàng)是不準(zhǔn)確的?()A.Word2Vec可以通過(guò)CBOW和Skip-gram兩種方式訓(xùn)練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計(jì)信息,能夠捕捉更全局的語(yǔ)義關(guān)系C.Word2Vec訓(xùn)練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務(wù)上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務(wù)9、假設(shè)我們有一個(gè)時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來(lái)的值。以下哪種機(jī)器學(xué)習(xí)算法可能不太適合()A.線性回歸B.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)C.隨機(jī)森林D.自回歸移動(dòng)平均模型(ARMA)10、某研究需要對(duì)音頻信號(hào)進(jìn)行分類,例如區(qū)分不同的音樂(lè)風(fēng)格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時(shí)域特征C.時(shí)頻特征D.以上特征都常用11、在使用樸素貝葉斯算法進(jìn)行分類時(shí),以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡(jiǎn)化了概率計(jì)算B.對(duì)于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對(duì)輸入數(shù)據(jù)的分布沒(méi)有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時(shí)性能較差,容易出現(xiàn)過(guò)擬合12、在進(jìn)行聚類分析時(shí),有多種聚類算法可供選擇。假設(shè)我們要對(duì)一組客戶數(shù)據(jù)進(jìn)行細(xì)分,以發(fā)現(xiàn)不同的客戶群體。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法需要預(yù)先指定聚類的個(gè)數(shù)K,并通過(guò)迭代優(yōu)化來(lái)確定聚類中心B.層次聚類算法通過(guò)不斷合并或分裂聚類來(lái)構(gòu)建聚類層次結(jié)構(gòu)C.密度聚類算法(DBSCAN)可以發(fā)現(xiàn)任意形狀的聚類,并且對(duì)噪聲數(shù)據(jù)不敏感D.所有的聚類算法都能保證得到的聚類結(jié)果是最優(yōu)的,不受初始條件和數(shù)據(jù)分布的影響13、假設(shè)要對(duì)大量的文本數(shù)據(jù)進(jìn)行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術(shù)可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對(duì)短文本效果可能不好B.非負(fù)矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對(duì)較弱C.基于詞向量的聚類方法,如K-Means聚類,但依賴于詞向量的質(zhì)量和表示D.層次聚類方法,能夠展示主題的層次結(jié)構(gòu),但計(jì)算復(fù)雜度較高14、在一個(gè)回歸問(wèn)題中,如果數(shù)據(jù)存在非線性關(guān)系并且噪聲較大,以下哪種模型可能更適合?()A.多項(xiàng)式回歸B.高斯過(guò)程回歸C.嶺回歸D.Lasso回歸15、在進(jìn)行深度學(xué)習(xí)中的圖像生成任務(wù)時(shí),生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的模型。假設(shè)我們要生成逼真的人臉圖像。以下關(guān)于GAN的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,它們通過(guò)相互對(duì)抗來(lái)提高生成圖像的質(zhì)量B.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務(wù)是區(qū)分輸入的圖像是真實(shí)的還是由生成器生成的D.GAN的訓(xùn)練過(guò)程穩(wěn)定,不容易出現(xiàn)模式崩潰等問(wèn)題16、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),我們經(jīng)常使用混淆矩陣來(lái)分析模型的性能。假設(shè)一個(gè)二分類問(wèn)題的混淆矩陣如下:()預(yù)測(cè)為正類預(yù)測(cè)為負(fù)類實(shí)際為正類8020實(shí)際為負(fù)類1090那么該模型的準(zhǔn)確率是多少()A.80%B.90%C.70%D.85%17、當(dāng)處理不平衡數(shù)據(jù)集(即某個(gè)類別在數(shù)據(jù)中占比極小)時(shí),以下哪種方法可以提高模型對(duì)少數(shù)類別的識(shí)別能力()A.對(duì)多數(shù)類別進(jìn)行欠采樣B.對(duì)少數(shù)類別進(jìn)行過(guò)采樣C.調(diào)整分類閾值D.以上方法都可以18、考慮在一個(gè)圖像識(shí)別任務(wù)中,需要對(duì)不同的物體進(jìn)行分類,例如貓、狗、汽車(chē)等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對(duì)圖像進(jìn)行模糊處理D.減小圖像的分辨率19、考慮一個(gè)回歸問(wèn)題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測(cè)值與真實(shí)值之間的MSE較大,這意味著什么()A.模型的預(yù)測(cè)非常準(zhǔn)確B.模型存在過(guò)擬合C.模型存在欠擬合D.無(wú)法確定模型的性能20、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測(cè)任務(wù),例如在圖像中檢測(cè)出人物和車(chē)輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測(cè)中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測(cè)二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)中的深度學(xué)習(xí)模型。2、(本題5分)什么是多分類問(wèn)題?處理多分類問(wèn)題的常見(jiàn)方法有哪些?3、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)中的Q-learning算法。4、(本題5分)簡(jiǎn)述在智能安防中,機(jī)器學(xué)習(xí)的應(yīng)用。5、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行文本摘要生成。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)通過(guò)層次聚類方法對(duì)一組基因表達(dá)數(shù)據(jù)進(jìn)行分類,探討基因之間的相似性。2、(本題5分)通過(guò)護(hù)理學(xué)數(shù)據(jù)監(jiān)測(cè)患者健康狀況和提供護(hù)理建議。3、(本題5分)利用GAN生成新的藝術(shù)作品。4、(本題5分)使用Adaboost算法對(duì)信用卡的套現(xiàn)行為進(jìn)行檢測(cè)。5、(本題5分)運(yùn)用獸醫(yī)領(lǐng)域數(shù)據(jù)診斷動(dòng)物疾病和制定治療方案。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)闡述機(jī)器學(xué)習(xí)中的強(qiáng)化學(xué)習(xí)在游戲中的應(yīng)用。分析游戲策略學(xué)習(xí)、智能對(duì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CI 456-2024數(shù)字孿生水利基礎(chǔ)信息編碼河流堤防代碼
- 黃金公司合同范本4篇
- 上海市安全員C證考試題庫(kù)及答案
- 香水草種苗采購(gòu)合同3篇
- 臨床護(hù)理心肺復(fù)蘇注意事項(xiàng)
- T/ZHCA 003-2018化妝品影響經(jīng)表皮水分流失測(cè)試方法
- 創(chuàng)新創(chuàng)業(yè)衛(wèi)生巾
- 重慶科瑞制藥(集團(tuán))有限公司招聘筆試題庫(kù)2025
- T/YNIA 022-2024閃蒸法非織造布
- 2025年智能制造與工業(yè)互聯(lián)網(wǎng)知識(shí)測(cè)試試題及答案
- 《菊次郎的夏天》電影賞析
- 課件:《中華民族共同體概論》第十五講:新時(shí)代與中華民族共同體建設(shè)
- 汽車(chē)剎車(chē)片與剎車(chē)盤(pán)檢測(cè)考核試卷
- 2024年海南省中考?xì)v史試題
- 2024年中考語(yǔ)文記述文閱讀題答題模板及練習(xí):人稱及其作用分析(原卷版)
- 高空吊板作業(yè)專項(xiàng)方案
- 事業(yè)單位員工保密協(xié)議書(shū)范本(2024版)
- 化工設(shè)備機(jī)械基礎(chǔ)試題庫(kù)(附參考答案)
- JG-T+502-2016環(huán)氧樹(shù)脂涂層鋼筋
- CJJ99-2017 城市橋梁養(yǎng)護(hù)技術(shù)標(biāo)準(zhǔn)
- 國(guó)際金融(吉林大學(xué))智慧樹(shù)知到期末考試答案章節(jié)答案2024年吉林大學(xué)
評(píng)論
0/150
提交評(píng)論