錫林郭勒市重點中學2025年高三第二次診斷性檢測試題數(shù)學試題文試卷含解析_第1頁
錫林郭勒市重點中學2025年高三第二次診斷性檢測試題數(shù)學試題文試卷含解析_第2頁
錫林郭勒市重點中學2025年高三第二次診斷性檢測試題數(shù)學試題文試卷含解析_第3頁
錫林郭勒市重點中學2025年高三第二次診斷性檢測試題數(shù)學試題文試卷含解析_第4頁
錫林郭勒市重點中學2025年高三第二次診斷性檢測試題數(shù)學試題文試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

錫林郭勒市重點中學2025年高三第二次診斷性檢測試題數(shù)學試題文試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,在邊上滿足,為的中點,則().A. B. C. D.2.已知集合,集合,則A. B.或C. D.3.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.44.已知數(shù)列中,,(),則等于()A. B. C. D.25.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.6.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.87.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.8.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.9.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣8510.在直角梯形中,,,,,點為上一點,且,當?shù)闹底畲髸r,()A. B.2 C. D.11.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)12.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在正四棱柱中,P是側棱上一點,且.設三棱錐的體積為,正四棱柱的體積為V,則的值為________.14.《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.15.已知非零向量的夾角為,且,則______.16.一個空間幾何體的三視圖及部分數(shù)據(jù)如圖所示,則這個幾何體的體積是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟利益的角度來考慮,小張應選擇哪種還款方式.參考數(shù)據(jù):.18.(12分)設函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.19.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.(1)證明:平面PNB;(2)問棱PA上是否存在一點E,使平面DEM,求的值20.(12分)交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員女性駕駛員合計(2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結果相互獨立,求的分布列和數(shù)學期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82821.(12分)已知函數(shù).(1)當時,判斷在上的單調性并加以證明;(2)若,,求的取值范圍.22.(10分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.本題考查平面向量的線性運算性質以及平面向量基本定理的應用,是一道基礎題.2.C【解析】

由可得,解得或,所以或,又,所以,故選C.3.C【解析】

設直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.4.A【解析】

分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

故選:A.本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎題.5.C【解析】

由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數(shù)學運算能力,難度一般.6.C【解析】

解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎題.7.D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.本題考查向量的線性運算問題,屬于基礎題8.D【解析】

先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎題.9.D【解析】

由等比數(shù)列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.10.B【解析】

由題,可求出,所以,根據(jù)共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉化思想和解題能力.11.C【解析】

根據(jù)表示不超過的最大正整數(shù),可構建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項A,函數(shù),故錯誤;選項B,函數(shù)為非奇非偶函數(shù),故錯誤;選項C,函數(shù)是以1為周期的周期函數(shù),故正確;選項D,函數(shù)在區(qū)間上是增函數(shù),但在整個定義域范圍上不具備單調性,故錯誤.故選:C本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質,屬于較難題.12.C【解析】

先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計算可得.【詳解】解:設正四棱柱的底面邊長,高,則,即故答案為:本題考查柱體、錐體的體積計算,屬于基礎題.14.【解析】

觀察八卦中陰線和陽線的情況為3線全為陽線或全為陰線各一個,還有6個是1陰2陽和1陽2陰各3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。【詳解】八卦中陰線和陽線的情況為3線全為陽線的一個,全為陰線的一個,1陰2陽的3個,1陽2陰的3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰?!鄰?個卦中任取2卦,共有種可能,兩卦中共2陽4陰的情況有,所求概率為。故答案為:。本題考查古典概型,解題關鍵是確定基本事件的個數(shù)。本題不能受八卦影響,我們關心的是八卦中陰線和陽線的條數(shù),這樣才能正確地確定基本事件的個數(shù)。15.1【解析】

由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,

可得,

解得,

故答案為:1.本題考查根據(jù)向量的數(shù)量積運算求向量的模,關鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡求解即可,屬于基礎題.16.【解析】

先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數(shù)列,即可由等差數(shù)列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數(shù)列,記為,表示數(shù)列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經(jīng)濟利益的角度來考慮,小張應選擇等額本金還款方式.本題考查了等差數(shù)列與等比數(shù)列求和公式的綜合應用,數(shù)列在實際問題中的應用,理解題意是解決問題的關鍵,屬于中檔題.18.(1)整數(shù)的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構造函數(shù),利用導數(shù)研究函數(shù)的單調性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結論得到,利用不等式的基本性質可證得結論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調遞增,,,,,故存在使得,即,從而當時,有,,所以,函數(shù)在上單調遞增;當時,有,,所以,函數(shù)在上單調遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,本題考查導數(shù)在函數(shù)單調性、最值中的應用,以及放縮法證明不等式的技巧,屬于難題.19.(1)證明見解析;(2)存在,.【解析】

(1)根據(jù)題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點Q,連接EQ,利用線面平行的性質定理可得,從而可得,在正方形ABCD中,由即可求解.【詳解】(1)證明:在正方形ABCD中,M,N分別是AB,AD的中點,∴,,.∴.∴.又,∴,∴.∵為等邊三角形,N是AD的中點,∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如圖,連接AC交DM于點Q,連接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在點E,使平面DEM,此時,E是棱A的靠近點A的三等分點.本題考查了線面垂直的判定定理、線面平行的性質定理,考查了學生的推理能力以及空間想象能力,屬于空間幾何中的基礎題.20.(1)填表見解析;有的把握認為,平均車速超過與性別有關(2)詳見解析【解析】

(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出有的把握認為,平均車速超過與性別有關.(2)利用二項分布的知識計算出分布列和數(shù)學期望.【詳解】(1)平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員301040女性駕駛員51520合計352560因為,,所以有的把握認為,平均車速超過與性別有關.(2)服從,即,.所以的分布列如下0123的期望本小題主要考查列聯(lián)表獨立性檢驗,考查二項分布分布列和數(shù)學期

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論