![河北美術(shù)學(xué)院《廣告設(shè)計(jì)與管理》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁](http://file4.renrendoc.com/view11/M00/2D/04/wKhkGWewGpqAV9O_AALGBtAMfSE257.jpg)
![河北美術(shù)學(xué)院《廣告設(shè)計(jì)與管理》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁](http://file4.renrendoc.com/view11/M00/2D/04/wKhkGWewGpqAV9O_AALGBtAMfSE2572.jpg)
![河北美術(shù)學(xué)院《廣告設(shè)計(jì)與管理》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁](http://file4.renrendoc.com/view11/M00/2D/04/wKhkGWewGpqAV9O_AALGBtAMfSE2573.jpg)
![河北美術(shù)學(xué)院《廣告設(shè)計(jì)與管理》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁](http://file4.renrendoc.com/view11/M00/2D/04/wKhkGWewGpqAV9O_AALGBtAMfSE2574.jpg)
![河北美術(shù)學(xué)院《廣告設(shè)計(jì)與管理》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁](http://file4.renrendoc.com/view11/M00/2D/04/wKhkGWewGpqAV9O_AALGBtAMfSE2575.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁河北美術(shù)學(xué)院
《廣告設(shè)計(jì)與管理》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的視頻理解不僅包括對(duì)單個(gè)幀的分析,還需要考慮幀之間的關(guān)系。假設(shè)我們要理解一個(gè)電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時(shí)空動(dòng)態(tài)信息和語義信息?()A.基于幀級(jí)特征和分類器的方法B.基于深度學(xué)習(xí)的視頻理解模型,結(jié)合注意力機(jī)制C.基于光流和運(yùn)動(dòng)軌跡的方法D.基于音頻和視頻融合的方法2、在計(jì)算機(jī)視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關(guān)于特征提取方法的描述,哪一項(xiàng)是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對(duì)圖像的旋轉(zhuǎn)、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計(jì)算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測C.深度學(xué)習(xí)中的自動(dòng)特征提取,例如通過卷積神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)到的特征,比手工設(shè)計(jì)的特征更具有代表性和判別力D.特征提取的結(jié)果對(duì)后續(xù)的圖像處理任務(wù)影響不大,不同的特征提取方法可以得到相似的處理效果3、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對(duì)抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對(duì)抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息4、計(jì)算機(jī)視覺中的圖像增強(qiáng)旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對(duì)比度、有噪聲的醫(yī)學(xué)圖像需要進(jìn)行增強(qiáng)處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強(qiáng)技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波5、計(jì)算機(jī)視覺中的三維重建技術(shù)可以從多幅圖像中恢復(fù)物體的三維形狀。假設(shè)要對(duì)一個(gè)古老建筑進(jìn)行三維重建。以下關(guān)于三維重建方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過立體視覺的方法,從不同角度拍攝的圖像中計(jì)算深度信息B.基于結(jié)構(gòu)光的方法能夠快速獲取物體表面的三維點(diǎn)云數(shù)據(jù)C.深度學(xué)習(xí)在三維重建中也有應(yīng)用,能夠?qū)W習(xí)從二維圖像到三維形狀的映射D.三維重建的結(jié)果總是非常精確,與真實(shí)物體的形狀完全一致6、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是對(duì)視頻中的人體動(dòng)作進(jìn)行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識(shí)別其中運(yùn)動(dòng)員的各種動(dòng)作,以下哪種方法能夠有效地捕捉動(dòng)作的時(shí)空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法7、在計(jì)算機(jī)視覺的行人檢測任務(wù)中,假設(shè)要在一個(gè)擁擠的街道場景中準(zhǔn)確檢測出行人,場景中存在光照變化、人群遮擋和復(fù)雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學(xué)習(xí)的特征,通過卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)學(xué)習(xí)D.不提取任何特征,直接對(duì)原始圖像進(jìn)行檢測8、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是對(duì)視頻中人物或物體的動(dòng)作進(jìn)行分類和識(shí)別。以下關(guān)于動(dòng)作識(shí)別的描述,不準(zhǔn)確的是()A.動(dòng)作識(shí)別需要分析視頻中的時(shí)空特征來理解動(dòng)作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動(dòng)作識(shí)別任務(wù)中被廣泛應(yīng)用,分別處理空間和時(shí)間信息C.動(dòng)作識(shí)別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價(jià)值D.動(dòng)作識(shí)別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識(shí)別各種復(fù)雜和細(xì)微的動(dòng)作9、視頻分析是計(jì)算機(jī)視覺的一個(gè)重要領(lǐng)域。假設(shè)我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對(duì)于這種實(shí)時(shí)性要求較高的視頻分析任務(wù),以下哪種方法更適合用于快速處理和檢測?()A.對(duì)每一幀圖像單獨(dú)進(jìn)行分析B.基于光流的方法跟蹤對(duì)象運(yùn)動(dòng)C.利用深度學(xué)習(xí)模型直接對(duì)視頻進(jìn)行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除10、當(dāng)處理低光照條件下拍攝的圖像時(shí),為了增強(qiáng)圖像的亮度和對(duì)比度,同時(shí)減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡單地增加圖像的整體亮度值D.不進(jìn)行任何處理,保留低光照效果11、計(jì)算機(jī)視覺中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復(fù)成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗(yàn)知識(shí)和深度學(xué)習(xí)的方法可以改善圖像超分辨率的效果12、當(dāng)進(jìn)行圖像的去霧處理時(shí),假設(shè)要去除圖像中由于霧氣導(dǎo)致的模糊和低對(duì)比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計(jì)大氣光和透射率B.對(duì)圖像進(jìn)行簡單的對(duì)比度增強(qiáng)C.不進(jìn)行去霧處理,保留有霧的效果D.隨機(jī)調(diào)整圖像的亮度和飽和度13、在計(jì)算機(jī)視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時(shí)保持圖像的細(xì)節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對(duì)抗網(wǎng)絡(luò)(GAN)D.自動(dòng)編碼器(Autoencoder)14、目標(biāo)檢測是計(jì)算機(jī)視覺中的常見任務(wù),例如在監(jiān)控視頻中檢測行人或車輛。假設(shè)我們要開發(fā)一個(gè)目標(biāo)檢測系統(tǒng),以下關(guān)于目標(biāo)檢測算法的描述,哪一項(xiàng)是不正確的?()A.基于區(qū)域建議的方法,如R-CNN系列算法,通過生成候選區(qū)域并對(duì)其進(jìn)行分類和定位來實(shí)現(xiàn)目標(biāo)檢測B.一階段目標(biāo)檢測算法,如YOLO和SSD,直接在圖像上進(jìn)行目標(biāo)的分類和定位,速度相對(duì)較快C.目標(biāo)檢測算法的性能通常用準(zhǔn)確率、召回率和平均精度均值(mAP)等指標(biāo)來評(píng)估D.目標(biāo)檢測算法的精度和速度是相互獨(dú)立的,提高精度不會(huì)影響速度,反之亦然15、計(jì)算機(jī)視覺中的視覺注意力機(jī)制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺注意力機(jī)制的說法,不正確的是()A.視覺注意力機(jī)制可以根據(jù)圖像的特征和任務(wù)需求動(dòng)態(tài)地選擇關(guān)注的區(qū)域B.注意力機(jī)制能夠提高模型的效率和性能,減少對(duì)無關(guān)信息的處理C.視覺注意力機(jī)制在圖像分類、目標(biāo)檢測和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺注意力機(jī)制的引入會(huì)增加模型的復(fù)雜度和計(jì)算量,降低模型的訓(xùn)練速度二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋計(jì)算機(jī)視覺中的物體計(jì)數(shù)技術(shù)。2、(本題5分)說明計(jì)算機(jī)視覺在海洋地質(zhì)調(diào)查中的應(yīng)用。3、(本題5分)說明計(jì)算機(jī)視覺在畜牧業(yè)中的動(dòng)物行為分析。4、(本題5分)簡述圖像的稀疏表示方法。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)使用立體視覺技術(shù),計(jì)算兩個(gè)相機(jī)拍攝的同一物體的深度信息。2、(本題5分)對(duì)電影中的色彩運(yùn)用和視覺風(fēng)格進(jìn)行基于計(jì)算機(jī)視覺的分析。3、(本題5分)基于計(jì)算機(jī)視覺的智能工廠物料搬運(yùn)系統(tǒng),實(shí)現(xiàn)物料的自動(dòng)識(shí)別和搬運(yùn)。4、(本題5分)利用圖像增強(qiáng)技術(shù),提升霧霾天氣下拍攝圖像的清晰度。5、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測商場自動(dòng)扶梯的運(yùn)行狀況。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)以可口可樂的節(jié)日廣告為例,分析其如何通過特殊的設(shè)計(jì)和創(chuàng)意,營造節(jié)日氛圍,提升品牌的親和力和影響力。2、(本題10分)以一個(gè)時(shí)尚品牌的時(shí)裝周秀場
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年農(nóng)村集體土地承包合同示例
- 2025年勞動(dòng)合同與勞務(wù)合同差異對(duì)比
- 2025年航空備品項(xiàng)目提案報(bào)告
- 2025年分析儀器及裝置項(xiàng)目提案報(bào)告模板
- 2025年精細(xì)藥液過濾器項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 2025年臨時(shí)辦公租賃合同范本
- 2025年區(qū)域航空維修合作與發(fā)展協(xié)議
- 2025年合作伙伴商鋪經(jīng)營合同
- 2025年企業(yè)商業(yè)保密合同
- 2025年交通服務(wù)費(fèi)用回收協(xié)議
- 2024-2030年中國紫蘇市場深度局勢分析及未來5發(fā)展趨勢報(bào)告
- 銷售人員課件教學(xué)課件
- LED大屏技術(shù)方案(適用于簡單的項(xiàng)目)
- 城市自來水廠課程設(shè)計(jì)
- 2024智慧城市數(shù)據(jù)采集標(biāo)準(zhǔn)規(guī)范
- Lesson 6 What colour is it(教學(xué)設(shè)計(jì))-2023-2024學(xué)年接力版英語三年級(jí)下冊
- 歷年國家二級(jí)(Python)機(jī)試真題匯編(含答案)
- 第五單元任務(wù)二《準(zhǔn)備與排練》教學(xué)設(shè)計(jì) 統(tǒng)編版語文九年級(jí)下冊
- 虧損企業(yè)減虧專項(xiàng)治理方案
- 《垃圾發(fā)電廠爐渣處理技術(shù)規(guī)范》
- 設(shè)計(jì)質(zhì)量、進(jìn)度、服務(wù)保證措施
評(píng)論
0/150
提交評(píng)論