![新疆政法學(xué)院《平面設(shè)計(jì)與制作》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)](http://file4.renrendoc.com/view14/M04/1E/2D/wKhkGWeq4iqANEwaAAKqGE5lKfw382.jpg)
![新疆政法學(xué)院《平面設(shè)計(jì)與制作》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)](http://file4.renrendoc.com/view14/M04/1E/2D/wKhkGWeq4iqANEwaAAKqGE5lKfw3822.jpg)
![新疆政法學(xué)院《平面設(shè)計(jì)與制作》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)](http://file4.renrendoc.com/view14/M04/1E/2D/wKhkGWeq4iqANEwaAAKqGE5lKfw3823.jpg)
![新疆政法學(xué)院《平面設(shè)計(jì)與制作》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)](http://file4.renrendoc.com/view14/M04/1E/2D/wKhkGWeq4iqANEwaAAKqGE5lKfw3824.jpg)
![新疆政法學(xué)院《平面設(shè)計(jì)與制作》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)](http://file4.renrendoc.com/view14/M04/1E/2D/wKhkGWeq4iqANEwaAAKqGE5lKfw3825.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線(xiàn)第1頁(yè),共3頁(yè)新疆政法學(xué)院《平面設(shè)計(jì)與制作》
2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有重要作用。假設(shè)要在VR環(huán)境中實(shí)現(xiàn)真實(shí)感的物體交互,以下哪種技術(shù)可能對(duì)準(zhǔn)確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺(jué)B.光場(chǎng)成像C.結(jié)構(gòu)光D.運(yùn)動(dòng)捕捉2、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解需要從圖像中推斷出物體之間的關(guān)系和場(chǎng)景的語(yǔ)義信息。假設(shè)要理解一張室內(nèi)辦公室場(chǎng)景的圖像,包括家具的布局、人員的活動(dòng)等。以下哪種方法在進(jìn)行場(chǎng)景理解時(shí)最為有效?()A.基于對(duì)象檢測(cè)和分類(lèi)的方法B.基于圖模型的場(chǎng)景表示C.基于深度學(xué)習(xí)的場(chǎng)景解析D.基于規(guī)則推理的方法3、計(jì)算機(jī)視覺(jué)中的姿態(tài)估計(jì)是確定物體在三維空間中的位置和方向。假設(shè)要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計(jì)方法的描述,哪一項(xiàng)是不正確的?()A.基于視覺(jué)的姿態(tài)估計(jì)可以通過(guò)分析物體在圖像中的特征點(diǎn)來(lái)計(jì)算其姿態(tài)B.可以結(jié)合多個(gè)攝像頭的圖像信息,提高姿態(tài)估計(jì)的精度和魯棒性C.姿態(tài)估計(jì)通常需要先對(duì)物體進(jìn)行建模,然后通過(guò)匹配圖像和模型來(lái)確定姿態(tài)D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響4、計(jì)算機(jī)視覺(jué)中的圖像去噪旨在去除圖像中的噪聲,同時(shí)保留圖像的細(xì)節(jié)和結(jié)構(gòu)。假設(shè)我們有一張受到嚴(yán)重噪聲污染的醫(yī)學(xué)圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時(shí),最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法5、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,我們需要從多幅二維圖像中恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺(jué)的重建方法B.基于運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(StructurefromMotion)的方法C.利用激光掃描數(shù)據(jù)進(jìn)行重建D.基于模型擬合的重建方法6、在計(jì)算機(jī)視覺(jué)的醫(yī)學(xué)影像分析中,例如對(duì)腫瘤的檢測(cè)和分割,需要高精度和可靠性。假設(shè)我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術(shù)能夠有效地輔助醫(yī)生進(jìn)行準(zhǔn)確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的分割網(wǎng)絡(luò),結(jié)合多模態(tài)數(shù)據(jù)C.基于聚類(lèi)和分類(lèi)的方法D.基于形態(tài)學(xué)操作和閾值分割的方法7、人臉識(shí)別是計(jì)算機(jī)視覺(jué)的一個(gè)重要應(yīng)用。假設(shè)一個(gè)公司使用人臉識(shí)別系統(tǒng)進(jìn)行員工考勤。以下關(guān)于人臉識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.它可以通過(guò)提取面部特征,如眼睛、鼻子和嘴巴的形狀和位置,來(lái)進(jìn)行身份識(shí)別B.能夠適應(yīng)不同的表情、姿態(tài)和光照變化,保持較高的識(shí)別準(zhǔn)確率C.人臉識(shí)別系統(tǒng)的安全性極高,不存在被欺騙或誤識(shí)別的可能性D.深度學(xué)習(xí)模型在人臉識(shí)別中表現(xiàn)出色,大大提高了識(shí)別性能8、計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助實(shí)現(xiàn)精準(zhǔn)農(nóng)業(yè)。假設(shè)一個(gè)農(nóng)場(chǎng)需要通過(guò)計(jì)算機(jī)視覺(jué)監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況。以下關(guān)于計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以檢測(cè)農(nóng)作物的病蟲(chóng)害,及時(shí)采取防治措施B.能夠評(píng)估農(nóng)作物的生長(zhǎng)階段和成熟度,指導(dǎo)收獲時(shí)間C.計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)中的應(yīng)用完全不受天氣和光照條件的影響D.可以通過(guò)無(wú)人機(jī)搭載攝像頭進(jìn)行大面積的農(nóng)田監(jiān)測(cè)9、在進(jìn)行計(jì)算機(jī)視覺(jué)的三維重建時(shí),需要從多個(gè)視角的圖像中恢復(fù)物體的三維形狀和結(jié)構(gòu)。假設(shè)要對(duì)一個(gè)復(fù)雜的古建筑進(jìn)行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時(shí)效果較好?()A.基于立體視覺(jué)的重建B.基于運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學(xué)習(xí)的重建10、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中的應(yīng)用可以提供更沉浸式的體驗(yàn)。假設(shè)要在VR環(huán)境中實(shí)時(shí)跟蹤用戶(hù)的頭部運(yùn)動(dòng)并相應(yīng)地更新場(chǎng)景,以下關(guān)于VR/AR計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的基于傳感器的跟蹤方法能夠滿(mǎn)足VR中高精度的頭部運(yùn)動(dòng)跟蹤需求B.計(jì)算機(jī)視覺(jué)在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺(jué)特征提取和深度學(xué)習(xí)的頭部運(yùn)動(dòng)跟蹤算法可以實(shí)現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對(duì)計(jì)算機(jī)視覺(jué)算法的性能沒(méi)有影響11、計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的應(yīng)用越來(lái)越廣泛。假設(shè)要檢測(cè)電子電路板上的微小缺陷,以下關(guān)于圖像采集設(shè)備的選擇,哪一項(xiàng)是最為關(guān)鍵的?()A.選擇高分辨率的數(shù)碼相機(jī),獲取清晰的圖像B.選用具有大景深的鏡頭,確保整個(gè)電路板都清晰成像C.采用高速攝像機(jī),快速采集大量圖像D.選擇價(jià)格低廉的圖像采集設(shè)備,降低成本12、計(jì)算機(jī)視覺(jué)中的視覺(jué)跟蹤在監(jiān)控、機(jī)器人導(dǎo)航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個(gè)機(jī)器人需要跟蹤一個(gè)移動(dòng)的物體,同時(shí)適應(yīng)物體的外觀(guān)變化和環(huán)境干擾。以下哪種視覺(jué)跟蹤方法能夠提供較好的長(zhǎng)期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學(xué)習(xí)的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運(yùn)動(dòng)估計(jì)的跟蹤方法13、在計(jì)算機(jī)視覺(jué)中,圖像超分辨率重建是提高圖像分辨率和質(zhì)量的技術(shù)。以下關(guān)于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過(guò)插值、基于模型的方法或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像超分辨率重建中能夠生成更清晰、逼真的細(xì)節(jié)C.圖像超分辨率重建在醫(yī)學(xué)圖像、衛(wèi)星圖像和監(jiān)控圖像等領(lǐng)域有重要的應(yīng)用D.圖像超分辨率重建可以無(wú)限制地提高圖像的分辨率,不受原始圖像信息的限制14、在計(jì)算機(jī)視覺(jué)的圖像檢索任務(wù)中,根據(jù)用戶(hù)的需求從圖像數(shù)據(jù)庫(kù)中查找相關(guān)圖像。假設(shè)要從一個(gè)大型的圖像庫(kù)中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語(yǔ)義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無(wú)關(guān)D.可以結(jié)合用戶(hù)的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果15、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標(biāo)。假設(shè)我們要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種目標(biāo)跟蹤算法能夠更好地處理目標(biāo)的外觀(guān)變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學(xué)習(xí)的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法16、在計(jì)算機(jī)視覺(jué)的目標(biāo)識(shí)別任務(wù)中,假設(shè)目標(biāo)物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復(fù)被遮擋部分的信息?()A.多層感知機(jī)(MLP)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.注意力機(jī)制(AttentionMechanism)17、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛飛行器(UAV)中的應(yīng)用可以實(shí)現(xiàn)自主導(dǎo)航和環(huán)境感知。假設(shè)一個(gè)UAV需要在復(fù)雜的環(huán)境中飛行并避開(kāi)障礙物。以下關(guān)于計(jì)算機(jī)視覺(jué)在UAV中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)視覺(jué)傳感器獲取周?chē)h(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠?qū)崟r(shí)分析圖像,計(jì)算與障礙物的距離和相對(duì)速度,為飛行決策提供依據(jù)C.計(jì)算機(jī)視覺(jué)在UAV中的應(yīng)用完全不需要與其他傳感器(如慣性測(cè)量單元)的數(shù)據(jù)融合D.可以利用深度學(xué)習(xí)算法進(jìn)行端到端的飛行控制,實(shí)現(xiàn)自主飛行18、計(jì)算機(jī)視覺(jué)中的全景圖像拼接是將多個(gè)視角的圖像組合成一個(gè)全景圖像。假設(shè)我們有一組用普通相機(jī)拍攝的場(chǎng)景照片,要拼接成一個(gè)無(wú)縫的全景圖,以下哪個(gè)步驟對(duì)于拼接的質(zhì)量影響最大?()A.特征點(diǎn)提取和匹配B.圖像融合和過(guò)渡處理C.相機(jī)參數(shù)估計(jì)和校正D.圖像的裁剪和縮放19、視頻分析是計(jì)算機(jī)視覺(jué)的一個(gè)重要領(lǐng)域。假設(shè)要對(duì)一段監(jiān)控視頻中的行為進(jìn)行分析和理解,以下關(guān)于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨(dú)立的圖像進(jìn)行處理,就能準(zhǔn)確分析視頻中的行為B.考慮視頻的時(shí)序信息和幀間的相關(guān)性對(duì)于理解復(fù)雜的行為非常重要C.視頻分析只適用于簡(jiǎn)單的動(dòng)作識(shí)別,對(duì)于復(fù)雜的多人物交互行為無(wú)法處理D.視頻的分辨率和幀率對(duì)視頻分析的結(jié)果沒(méi)有影響20、計(jì)算機(jī)視覺(jué)中的語(yǔ)義分割旨在為圖像中的每個(gè)像素分配一個(gè)類(lèi)別標(biāo)簽。假設(shè)要對(duì)醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行語(yǔ)義分割,以下關(guān)于模型評(píng)估指標(biāo)的選擇,哪一項(xiàng)是最為關(guān)鍵的?()A.準(zhǔn)確率,即正確分類(lèi)的像素比例B.召回率,即正確分割出腫瘤像素的比例C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率D.平均交并比(MIoU),衡量分割結(jié)果與真實(shí)標(biāo)簽的重合程度21、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,假設(shè)要從一組二維圖像恢復(fù)出物體的三維結(jié)構(gòu)。以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺(jué)的方法需要多視角的圖像,并且對(duì)相機(jī)的標(biāo)定精度要求不高B.結(jié)構(gòu)光方法能夠快速準(zhǔn)確地獲取物體表面的三維信息,但對(duì)環(huán)境光敏感C.從運(yùn)動(dòng)中恢復(fù)結(jié)構(gòu)(SfM)方法只適用于靜態(tài)場(chǎng)景,無(wú)法處理動(dòng)態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型22、在計(jì)算機(jī)視覺(jué)的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對(duì)抗網(wǎng)絡(luò)(GAN)架構(gòu),通過(guò)對(duì)抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息23、圖像分類(lèi)是計(jì)算機(jī)視覺(jué)的基本任務(wù)之一。假設(shè)要對(duì)大量的動(dòng)物圖像進(jìn)行分類(lèi),將其分為貓、狗、兔子等類(lèi)別。在進(jìn)行圖像分類(lèi)時(shí),以下關(guān)于特征提取的描述,正確的是:()A.手工設(shè)計(jì)的特征,如顏色直方圖、紋理特征等,總是比自動(dòng)學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)到具有判別性的圖像特征,無(wú)需人工干預(yù)C.特征提取的好壞對(duì)圖像分類(lèi)的結(jié)果影響不大,主要取決于分類(lèi)器的性能D.為了提高分類(lèi)準(zhǔn)確率,應(yīng)該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性24、圖像分類(lèi)是計(jì)算機(jī)視覺(jué)的基礎(chǔ)任務(wù)之一。假設(shè)要對(duì)一組動(dòng)物圖片進(jìn)行分類(lèi),區(qū)分貓、狗、兔子等。以下關(guān)于圖像分類(lèi)方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)方法,如支持向量機(jī)(SVM),也可以用于圖像分類(lèi)任務(wù)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類(lèi)中取得了顯著的效果C.圖像分類(lèi)只需要考慮圖像的內(nèi)容,不需要考慮圖像的拍攝角度和背景等因素D.可以通過(guò)數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、裁剪、翻轉(zhuǎn)等,增加訓(xùn)練數(shù)據(jù)的多樣性25、計(jì)算機(jī)視覺(jué)中的特征提取是非常關(guān)鍵的一步。以下關(guān)于特征提取方法的描述,不準(zhǔn)確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場(chǎng)景下仍然有效B.深度學(xué)習(xí)中的自動(dòng)特征提取能夠?qū)W習(xí)到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類(lèi)、目標(biāo)檢測(cè)等任務(wù)的性能D.特征提取只關(guān)注圖像的局部信息,而忽略了全局信息二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在地震監(jiān)測(cè)中的作用。2、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的目標(biāo)跟蹤方法。3、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在海洋生態(tài)監(jiān)測(cè)中的作用。4、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在海洋聲學(xué)研究中的作用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)解析某電商平臺(tái)的購(gòu)物車(chē)頁(yè)面設(shè)計(jì),探討其在功能布局、視覺(jué)效果、用戶(hù)體驗(yàn)方面的表現(xiàn),以及如何提高用戶(hù)的購(gòu)物效率和滿(mǎn)意度。2、(本題5分)探討某文化活動(dòng)的邀請(qǐng)函設(shè)計(jì),研究其如何通過(guò)獨(dú)特的設(shè)計(jì)風(fēng)格和個(gè)性化內(nèi)容,邀請(qǐng)嘉賓參與,提升活動(dòng)的吸引力。3、(本題5分)以一個(gè)電子產(chǎn)品品牌的產(chǎn)品說(shuō)明書(shū)設(shè)計(jì)為例,分析其如何運(yùn)用圖形、文字等元素清晰地傳
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 達(dá)州2025年四川達(dá)州市總工會(huì)招聘工會(huì)社會(huì)工作者11人筆試歷年參考題庫(kù)附帶答案詳解
- 貴州2025年貴州省能源局所屬事業(yè)單位招聘1人筆試歷年參考題庫(kù)附帶答案詳解
- 河北秦皇島海港區(qū)九年級(jí)上學(xué)期期中測(cè)試語(yǔ)文卷(PDF版含答案)
- 淮安2025年江蘇淮安漣水縣公安局警務(wù)輔助人員招聘87人(一)筆試歷年參考題庫(kù)附帶答案詳解
- 廣東廣東財(cái)經(jīng)大學(xué)面向海內(nèi)外招聘學(xué)科方向帶頭人筆試歷年參考題庫(kù)附帶答案詳解
- 2025至2031年中國(guó)防油密封圈行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 2025年肺泡放大模型項(xiàng)目可行性研究報(bào)告
- 2025年磁性?xún)?nèi)膽學(xué)生用尺項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國(guó)電熱毛巾衣物快干器行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 2025年步進(jìn)馬達(dá)驅(qū)動(dòng)器項(xiàng)目可行性研究報(bào)告
- 2022版義務(wù)教育(地理)課程標(biāo)準(zhǔn)(附課標(biāo)解讀)
- 《醫(yī)學(xué)免疫學(xué)實(shí)驗(yàn)》課件
- C139客戶(hù)開(kāi)發(fā)管理模型
- 中考英語(yǔ)閱讀理解(含答案)30篇
- GB/T 5019.5-2023以云母為基的絕緣材料第5部分:電熱設(shè)備用硬質(zhì)云母板
- 《工傷保險(xiǎn)專(zhuān)題》課件
- 2024年農(nóng)發(fā)集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 京東運(yùn)營(yíng)課件
- 安寧療護(hù)中的人文護(hù)理課件
- 頭痛的護(hù)理小課件
- 熱工基礎(chǔ)(第二版)-張學(xué)學(xué)(8)第七章
評(píng)論
0/150
提交評(píng)論