南寧師范大學《量化分析》2023-2024學年第二學期期末試卷_第1頁
南寧師范大學《量化分析》2023-2024學年第二學期期末試卷_第2頁
南寧師范大學《量化分析》2023-2024學年第二學期期末試卷_第3頁
南寧師范大學《量化分析》2023-2024學年第二學期期末試卷_第4頁
南寧師范大學《量化分析》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁南寧師范大學

《量化分析》2023-2024學年第二學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在數(shù)據(jù)分析中的關聯(lián)規(guī)則挖掘中,以下關于支持度和置信度的說法,錯誤的是()A.支持度表示項集在數(shù)據(jù)集中出現(xiàn)的頻率,用于衡量規(guī)則的普遍性B.置信度表示在包含前提條件的事務中同時包含結論的概率,用于衡量規(guī)則的可靠性C.通常情況下,支持度和置信度越高,關聯(lián)規(guī)則越有價值D.只關注支持度或置信度其中一個指標就可以確定有效的關聯(lián)規(guī)則,另一個指標可以忽略2、在數(shù)據(jù)倉庫和數(shù)據(jù)集市的建設中,需要考慮數(shù)據(jù)的整合和存儲。假設要為一個企業(yè)構建數(shù)據(jù)存儲架構,以下關于數(shù)據(jù)倉庫和數(shù)據(jù)集市選擇的描述,正確的是:()A.只建立數(shù)據(jù)倉庫,不考慮數(shù)據(jù)集市,認為數(shù)據(jù)倉庫能夠滿足所有分析需求B.盲目建立數(shù)據(jù)集市,不與數(shù)據(jù)倉庫進行有效的集成和協(xié)調C.根據(jù)企業(yè)的規(guī)模、業(yè)務需求和數(shù)據(jù)特點,合理規(guī)劃數(shù)據(jù)倉庫和數(shù)據(jù)集市的架構,確保數(shù)據(jù)的一致性和可用性,并明確它們在數(shù)據(jù)分析中的角色和作用D.不考慮數(shù)據(jù)的更新和維護,只關注初始的建設3、在進行時間序列預測時,如果數(shù)據(jù)存在明顯的周期性,但周期長度不固定,以下哪種方法可能適用?()A.Prophet模型B.LSTM神經(jīng)網(wǎng)絡C.動態(tài)時間規(guī)整D.以上都不是4、在進行數(shù)據(jù)分析時,選擇合適的統(tǒng)計指標能夠更好地描述數(shù)據(jù)特征。假設我們有一組學生的考試成績數(shù)據(jù),以下關于統(tǒng)計指標選擇的描述,正確的是:()A.計算均值可以準確反映學生成績的平均水平,不受極端值影響B(tài).中位數(shù)能夠避免極端值的干擾,更好地代表成績的一般水平C.眾數(shù)適用于描述成績的集中趨勢,尤其當數(shù)據(jù)分布均勻時D.方差越大,說明學生成績越穩(wěn)定,教學質量越高5、在數(shù)據(jù)分析的探索性分析階段,假設面對一個包含消費者購買行為的大型數(shù)據(jù)集,包括購買金額、購買頻率、購買商品類別等多個變量。為了初步了解數(shù)據(jù)的特征、分布和潛在關系,以下哪種方法可能最為有效?()A.計算各個變量的均值、中位數(shù)和標準差等統(tǒng)計量B.進行相關性分析,確定變量之間的關聯(lián)程度C.繪制直方圖和散點圖來觀察變量的分布和關系D.隨機抽取部分數(shù)據(jù)進行簡單觀察6、在數(shù)據(jù)分析中,模型的選擇和調優(yōu)需要根據(jù)數(shù)據(jù)和問題的特點進行。假設我們要解決一個分類問題。以下關于模型選擇和調優(yōu)的描述,哪一項是不準確的?()A.不同的模型在不同的數(shù)據(jù)集上表現(xiàn)可能不同,需要進行試驗和比較B.可以通過調整模型的超參數(shù)來優(yōu)化模型的性能C.模型越復雜,性能就一定越好,應該優(yōu)先選擇復雜的模型D.可以使用網(wǎng)格搜索、隨機搜索等方法進行超參數(shù)調優(yōu)7、數(shù)據(jù)分析中的探索性數(shù)據(jù)分析(EDA)有助于理解數(shù)據(jù)的特征和分布。假設我們正在分析一個關于股票市場的數(shù)據(jù)集,包括股票價格、成交量等變量。在進行EDA時,以下哪種可視化方法可能最有助于發(fā)現(xiàn)價格和成交量之間的潛在關系?()A.柱狀圖B.折線圖C.散點圖D.箱線圖8、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關重要的一步。假設我們有一個包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯誤數(shù)據(jù)和重復記錄等問題。以下關于數(shù)據(jù)清洗的描述,哪一項是不正確的?()A.可以通過刪除包含大量缺失值的記錄來簡化數(shù)據(jù),但可能會丟失有價值的信息B.對于錯誤的數(shù)據(jù),可以根據(jù)數(shù)據(jù)的分布和邏輯關系進行修正或刪除C.重復記錄的處理只需保留其中一條,對分析結果沒有實質性影響D.數(shù)據(jù)清洗的目的是提高數(shù)據(jù)質量,為后續(xù)的分析提供可靠的數(shù)據(jù)基礎9、某數(shù)據(jù)分析項目需要對大量文本數(shù)據(jù)進行情感分析。以下哪種技術常用于文本情感分析?()A.決策樹B.樸素貝葉斯C.支持向量機D.詞袋模型10、數(shù)據(jù)分析中的數(shù)據(jù)挖掘技術常用于發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和關系。假設要從一個大型電商網(wǎng)站的用戶購買記錄中挖掘出用戶的購買行為模式,以便進行精準營銷。以下哪種數(shù)據(jù)挖掘算法在處理這種大規(guī)模交易數(shù)據(jù)時更有可能發(fā)現(xiàn)有價值的信息?()A.決策樹算法B.關聯(lián)規(guī)則挖掘算法C.聚類算法D.神經(jīng)網(wǎng)絡算法11、數(shù)據(jù)分析中的決策樹算法具有易于理解和解釋的特點。假設我們構建了一個決策樹來預測客戶是否會購買某產(chǎn)品,以下哪個因素可能影響決策樹的復雜度和準確性?()A.特征選擇B.分裂準則C.剪枝策略D.以上都是12、在數(shù)據(jù)分析中,需要對缺失值進行處理,例如在一個包含客戶信息的數(shù)據(jù)集里,部分客戶的年齡數(shù)據(jù)缺失。以下哪種處理缺失值的方法可能是合適的?()A.直接刪除包含缺失值的記錄B.用平均值或中位數(shù)填充C.根據(jù)其他相關變量進行推測填充D.以上都是13、對于一個具有多個特征的數(shù)據(jù)集,若要進行特征選擇,以下哪種方法是基于特征重要性評估的?()A.遞歸特征消除B.基于隨機森林的特征重要性評估C.基于LASSO回歸的特征選擇D.以上都是14、在數(shù)據(jù)分析中,建立預測模型是常見的任務之一。假設我們要預測下個月的產(chǎn)品銷售量。以下關于預測模型的描述,哪一項是不準確的?()A.線性回歸模型假設自變量和因變量之間存在線性關系,適用于簡單的預測問題B.決策樹模型易于理解和解釋,但可能會出現(xiàn)過擬合的問題C.隨機森林是由多個決策樹組成的集成模型,性能通常優(yōu)于單個決策樹D.預測模型一旦建立,就不需要根據(jù)新的數(shù)據(jù)進行更新和調整15、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價值的信息。假設要從客戶的評價文本中挖掘他們的滿意度,以下關于文本挖掘的描述,哪一項是不正確的?()A.可以使用詞袋模型將文本轉換為數(shù)值向量,以便進行后續(xù)的分析B.情感分析能夠判斷文本的情感傾向,如積極、消極或中性C.主題模型可以發(fā)現(xiàn)文本中的潛在主題,但無法確定每個文本所屬的具體主題D.文本挖掘不需要對文本進行預處理,如分詞和去除停用詞16、在數(shù)據(jù)庫中,索引可以提高數(shù)據(jù)的查詢效率。以下哪種情況下不適合創(chuàng)建索引?()A.表中數(shù)據(jù)量較小B.經(jīng)常作為查詢條件的字段C.唯一性較差的字段D.頻繁更新的字段17、假設要對海量圖像數(shù)據(jù)進行分析,以下關于圖像數(shù)據(jù)分析方法的描述,正確的是:()A.直接使用傳統(tǒng)的數(shù)據(jù)分析方法處理圖像數(shù)據(jù),效果良好B.基于深度學習的圖像識別算法能夠自動提取圖像的特征C.圖像數(shù)據(jù)的分辨率對分析結果沒有影響D.不需要對圖像數(shù)據(jù)進行預處理,直接輸入模型進行分析18、在進行數(shù)據(jù)分析時,如果數(shù)據(jù)分布呈現(xiàn)右偏態(tài),以下哪種統(tǒng)計量更能代表數(shù)據(jù)的集中趨勢?()A.均值B.中位數(shù)C.眾數(shù)D.標準差19、在進行數(shù)據(jù)分析時,如果需要對數(shù)據(jù)進行缺失值處理,同時考慮數(shù)據(jù)的分布特征,以下哪種方法較為合適?()A.隨機森林插補B.基于聚類的插補C.基于回歸的插補D.以上都不是20、在數(shù)據(jù)分析的過程中,當面對一個包含大量用戶消費行為數(shù)據(jù)的數(shù)據(jù)集,需要找出影響用戶購買決策的關鍵因素,例如產(chǎn)品價格、促銷活動、用戶評價等。假設數(shù)據(jù)的維度眾多,關系復雜,以下哪種數(shù)據(jù)分析方法可能最為有效?()A.描述性統(tǒng)計分析B.相關性分析C.因子分析D.回歸分析21、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關重要。關于描述性統(tǒng)計分析和推斷性統(tǒng)計分析,以下敘述不正確的是()A.描述性統(tǒng)計分析主要用于對數(shù)據(jù)的集中趨勢、離散程度和分布形態(tài)進行描述和總結B.推斷性統(tǒng)計分析則是基于樣本數(shù)據(jù)對總體特征進行估計和假設檢驗C.描述性統(tǒng)計分析只能提供數(shù)據(jù)的基本信息,對于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關系作用有限D.在實際應用中,通常先進行描述性統(tǒng)計分析,然后根據(jù)研究目的和數(shù)據(jù)特點選擇是否進行推斷性統(tǒng)計分析22、在進行數(shù)據(jù)分析時,數(shù)據(jù)的可視化呈現(xiàn)方式會影響對數(shù)據(jù)的理解和解讀。假設我們要展示不同年齡段人群的收入分布情況。以下關于數(shù)據(jù)可視化呈現(xiàn)的描述,哪一項是不準確的?()A.可以使用小提琴圖同時展示數(shù)據(jù)的分布和密度B.雷達圖適合比較多個變量在不同類別上的表現(xiàn)C.3D圖表能夠更生動地展示數(shù)據(jù),應盡量使用3D圖表D.選擇合適的數(shù)據(jù)可視化呈現(xiàn)方式要考慮數(shù)據(jù)的特點和分析目的23、在數(shù)據(jù)可視化中,選擇合適的圖表類型對于清晰傳達信息至關重要。假設要展示不同地區(qū)在過去十年間的人口增長趨勢,以下哪種圖表可能是最合適的?()A.餅圖B.雷達圖C.折線圖D.氣泡圖24、數(shù)據(jù)分析中的假設檢驗用于判斷樣本數(shù)據(jù)是否支持某個假設。假設我們要檢驗一種新的營銷策略是否有效。以下關于假設檢驗的描述,哪一項是不正確的?()A.零假設通常表示沒有差異或沒有效果B.通過計算檢驗統(tǒng)計量和p值來決定是否拒絕零假設C.p值越小,說明拒絕零假設的證據(jù)越充分D.假設檢驗的結果一定能夠準確地反映實際情況,不存在誤差25、對于一個具有分類和數(shù)值型特征的數(shù)據(jù)集合,若要進行預處理,以下哪些步驟可能會被包括?()A.編碼分類特征B.處理異常值C.標準化數(shù)值型特征D.以上都是26、在數(shù)據(jù)分析中,大數(shù)據(jù)技術為處理海量數(shù)據(jù)提供了支持。假設要處理一個PB級別的數(shù)據(jù)集,以下關于大數(shù)據(jù)技術的描述,哪一項是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲數(shù)據(jù),能夠擴展到大規(guī)模的集群B.MapReduce編程模型可以實現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術只適用于處理結構化數(shù)據(jù),對于非結構化和半結構化數(shù)據(jù)無能為力D.實時處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架27、在數(shù)據(jù)庫中,若要優(yōu)化數(shù)據(jù)庫的存儲結構,以下哪個操作可能會被執(zhí)行?()A.合并表B.拆分表C.增加索引D.以上都是28、假設要分析一個市場調研數(shù)據(jù)集,了解消費者對不同品牌、產(chǎn)品特性和價格的偏好。在設計調查問卷和收集數(shù)據(jù)時,以下哪個原則可能是最重要的,以確保數(shù)據(jù)的質量和有效性?()A.問題的清晰性和簡潔性B.盡量多設置問題以獲取更多信息C.引導消費者給出特定答案D.不考慮消費者的反饋29、對于數(shù)據(jù)可視化,假設要展示不同地區(qū)在過去十年間的經(jīng)濟增長趨勢。數(shù)據(jù)涵蓋多個指標,且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個地區(qū)每年的經(jīng)濟數(shù)據(jù)B.折線圖,呈現(xiàn)每個地區(qū)經(jīng)濟數(shù)據(jù)隨時間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟占比D.箱線圖,反映數(shù)據(jù)的分布情況30、在數(shù)據(jù)分析中,評估模型的性能是重要的環(huán)節(jié)。假設我們已經(jīng)建立了一個預測模型。以下關于模型評估的描述,哪一項是不正確的?()A.可以使用交叉驗證來評估模型的穩(wěn)定性和泛化能力B.混淆矩陣可以幫助我們分析模型在不同類別上的預測情況C.準確率是評估模型性能的唯一指標,準確率越高模型越好D.可以根據(jù)具體問題選擇合適的評估指標,如召回率、F1值等二、論述題(本大題共5個小題,共25分)1、(本題5分)在醫(yī)療健康管理中,如何利用可穿戴設備收集的數(shù)據(jù)進行健康監(jiān)測和疾病預警,提供個性化的健康管理方案。2、(本題5分)分析在金融市場的量化投資策略中,如何運用數(shù)據(jù)分析構建交易模型,優(yōu)化投資決策,提高投資績效。3、(本題5分)分析在醫(yī)療數(shù)據(jù)的多模態(tài)融合中,如何整合圖像數(shù)據(jù)、文本數(shù)據(jù)和數(shù)值數(shù)據(jù)等,為疾病診斷和治療提供更全面的信息。4、(本題5分)隨著大數(shù)據(jù)技術的不斷發(fā)展,數(shù)據(jù)挖掘在市場營銷中的應用越來越廣泛。請詳細論述數(shù)據(jù)挖掘如何幫助企業(yè)分析客戶行為、預測市場趨勢、優(yōu)化營銷策略,并結合實際案例說明數(shù)據(jù)挖掘在提升企業(yè)市場競爭力方面的重要作用。5、(本題5分)在醫(yī)療臨床研究中,如何通過數(shù)據(jù)分析來驗證新藥物的療效、評估治療方案的有效性和安全性?請詳細闡述數(shù)據(jù)分析的方法和流程,以及如何處理臨床試驗數(shù)據(jù)中的復雜性和不確定性。三、簡答題(本大題共5個小題,共25分)1、(本題5分)在進行數(shù)據(jù)分析時,如何處理數(shù)據(jù)的多層次結構?闡述層次聚類、嵌套模型等方法的應用。2、(本題5分)闡述數(shù)據(jù)分析師在項目中應如何與團隊成員(如業(yè)務人員、開發(fā)人員)進行有效的溝通和協(xié)作,以確保項目的順利進行。3、(本題5分)解釋什么是數(shù)據(jù)融合,說明其在多源數(shù)據(jù)整合中的重要性,并列舉至少兩種數(shù)據(jù)融合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論