湖北青年職業(yè)學(xué)院《商務(wù)智能分析》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
湖北青年職業(yè)學(xué)院《商務(wù)智能分析》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
湖北青年職業(yè)學(xué)院《商務(wù)智能分析》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁湖北青年職業(yè)學(xué)院

《商務(wù)智能分析》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、對于一個(gè)不平衡的數(shù)據(jù)集,若要通過采樣方法來平衡數(shù)據(jù),以下哪種采樣策略可能會導(dǎo)致過擬合?()A.隨機(jī)過采樣B.隨機(jī)欠采樣C.SMOTE采樣D.以上都有可能2、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示一個(gè)公司在過去十年中不同產(chǎn)品的銷售額變化趨勢,同時(shí)要對比不同地區(qū)的銷售情況。以下哪種數(shù)據(jù)可視化方式最能清晰地呈現(xiàn)這些信息,便于分析和決策?()A.折線圖B.柱狀圖C.餅圖D.箱線圖3、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)倉庫設(shè)計(jì),假設(shè)要構(gòu)建一個(gè)企業(yè)級的數(shù)據(jù)倉庫來支持決策制定。以下哪個(gè)設(shè)計(jì)原則可能對于數(shù)據(jù)的存儲、管理和查詢性能至關(guān)重要?()A.規(guī)范化設(shè)計(jì),減少數(shù)據(jù)冗余B.維度建模,便于分析和查詢C.分布式存儲,提高可擴(kuò)展性D.不設(shè)計(jì)數(shù)據(jù)倉庫,直接使用原始業(yè)務(wù)數(shù)據(jù)庫4、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評估需要從多個(gè)方面衡量數(shù)據(jù)的優(yōu)劣。假設(shè)要評估一個(gè)收集的市場調(diào)研數(shù)據(jù)的質(zhì)量,包括準(zhǔn)確性、完整性、一致性和時(shí)效性等方面。以下哪種數(shù)據(jù)質(zhì)量評估指標(biāo)在綜合評估數(shù)據(jù)質(zhì)量時(shí)更具全面性和客觀性?()A.數(shù)據(jù)質(zhì)量得分B.數(shù)據(jù)質(zhì)量矩陣C.數(shù)據(jù)質(zhì)量報(bào)告D.以上方法效果相同5、對于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過去十年間的經(jīng)濟(jì)增長趨勢。數(shù)據(jù)涵蓋多個(gè)指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個(gè)地區(qū)每年的經(jīng)濟(jì)數(shù)據(jù)B.折線圖,呈現(xiàn)每個(gè)地區(qū)經(jīng)濟(jì)數(shù)據(jù)隨時(shí)間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟(jì)占比D.箱線圖,反映數(shù)據(jù)的分布情況6、在探索性數(shù)據(jù)分析(EDA)中,以下關(guān)于數(shù)據(jù)探索方法的描述,正確的是:()A.只查看數(shù)據(jù)的統(tǒng)計(jì)摘要,就能全面了解數(shù)據(jù)的特征B.繪制箱線圖可以直觀展示數(shù)據(jù)的分布和異常值情況C.相關(guān)性分析對于所有類型的數(shù)據(jù)都能得出明確的結(jié)論D.EDA只是初步步驟,對后續(xù)的深入分析沒有幫助7、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是8、在數(shù)據(jù)分析中,若要分析數(shù)據(jù)的偏態(tài)和峰態(tài),以下哪個(gè)統(tǒng)計(jì)量可以提供相關(guān)信息?()A.偏度系數(shù)B.峰度系數(shù)C.協(xié)方差D.相關(guān)系數(shù)9、在對一個(gè)社交媒體平臺的用戶興趣數(shù)據(jù)進(jìn)行分析,例如關(guān)注的話題、參與的討論組等,以進(jìn)行精準(zhǔn)的廣告投放。以下哪種數(shù)據(jù)挖掘技術(shù)可能在用戶畫像和廣告定向中發(fā)揮重要作用?()A.分類算法B.聚類算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都是10、在數(shù)據(jù)分析的特征工程中,假設(shè)要從原始數(shù)據(jù)中提取有意義的特征以提高模型的性能。原始數(shù)據(jù)包含大量的文本和數(shù)值信息。以下哪種特征提取方法可能更有助于提升模型的準(zhǔn)確性?()A.詞袋模型,將文本轉(zhuǎn)換為向量B.主成分分析,降低數(shù)據(jù)維度C.特征選擇,挑選重要的特征D.不進(jìn)行特征工程,直接使用原始數(shù)據(jù)11、在數(shù)據(jù)挖掘中,若要預(yù)測客戶的購買行為,以下哪種方法可能會被采用?()A.分類算法B.回歸算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都有可能12、對于一個(gè)大型數(shù)據(jù)集,若要快速篩選出符合特定條件的數(shù)據(jù),以下哪種數(shù)據(jù)庫操作更有效?()A.全表掃描B.索引查找C.排序D.分組13、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理包括數(shù)據(jù)標(biāo)準(zhǔn)化、歸一化等操作。假設(shè)要對不同量級的數(shù)據(jù)進(jìn)行處理,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為均值為0,標(biāo)準(zhǔn)差為1的分布,使得不同特征具有可比性B.歸一化可以將數(shù)據(jù)映射到特定的區(qū)間,如[0,1],但可能會改變數(shù)據(jù)的分布C.數(shù)據(jù)預(yù)處理對后續(xù)的分析和建模影響不大,可以根據(jù)個(gè)人喜好選擇是否進(jìn)行D.對于數(shù)值型數(shù)據(jù)和分類型數(shù)據(jù),需要采用不同的數(shù)據(jù)預(yù)處理方法14、在構(gòu)建數(shù)據(jù)分析模型時(shí),過擬合是一個(gè)常見的問題。假設(shè)一個(gè)模型在訓(xùn)練集上表現(xiàn)非常好,但在測試集上表現(xiàn)很差,這可能表明發(fā)生了什么?()A.模型過于簡單,無法捕捉數(shù)據(jù)中的復(fù)雜模式B.模型過于復(fù)雜,對訓(xùn)練數(shù)據(jù)過度擬合C.數(shù)據(jù)中存在噪聲,影響了模型的性能D.測試集的數(shù)據(jù)質(zhì)量有問題15、數(shù)據(jù)分析中的主成分分析(PCA)用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集。以下關(guān)于主成分分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.主成分是原始變量的線性組合,能夠保留數(shù)據(jù)的主要信息B.通過計(jì)算協(xié)方差矩陣的特征值和特征向量來確定主成分C.主成分分析可以消除變量之間的相關(guān)性,使數(shù)據(jù)更易于分析D.主成分分析后的維度數(shù)量是固定的,不能根據(jù)需要進(jìn)行調(diào)整16、在數(shù)據(jù)分析中,評估模型的性能是重要的環(huán)節(jié)。假設(shè)我們已經(jīng)建立了一個(gè)預(yù)測模型。以下關(guān)于模型評估的描述,哪一項(xiàng)是不正確的?()A.可以使用交叉驗(yàn)證來評估模型的穩(wěn)定性和泛化能力B.混淆矩陣可以幫助我們分析模型在不同類別上的預(yù)測情況C.準(zhǔn)確率是評估模型性能的唯一指標(biāo),準(zhǔn)確率越高模型越好D.可以根據(jù)具體問題選擇合適的評估指標(biāo),如召回率、F1值等17、在數(shù)據(jù)分析中,若要檢驗(yàn)數(shù)據(jù)是否具有獨(dú)立性,應(yīng)使用哪種檢驗(yàn)方法?()A.卡方檢驗(yàn)B.F檢驗(yàn)C.t檢驗(yàn)D.秩和檢驗(yàn)18、在對一個(gè)社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進(jìn)行分析,例如好友關(guān)系、群組活動等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點(diǎn)。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是19、在數(shù)據(jù)分析中,數(shù)據(jù)分析報(bào)告是傳達(dá)分析結(jié)果的重要方式。以下關(guān)于數(shù)據(jù)分析報(bào)告的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)分析報(bào)告應(yīng)包括問題背景、分析方法、結(jié)果呈現(xiàn)和結(jié)論建議等內(nèi)容B.數(shù)據(jù)分析報(bào)告應(yīng)使用簡潔明了的語言,避免使用專業(yè)術(shù)語和復(fù)雜的公式C.數(shù)據(jù)分析報(bào)告的結(jié)果應(yīng)具有客觀性和可靠性,不能帶有主觀偏見D.數(shù)據(jù)分析報(bào)告的格式和風(fēng)格可以隨意選擇,只要能表達(dá)清楚分析結(jié)果即可20、數(shù)據(jù)分析中的模型部署是將訓(xùn)練好的模型應(yīng)用到實(shí)際生產(chǎn)環(huán)境中。假設(shè)要將一個(gè)預(yù)測模型部署為在線服務(wù),以下哪個(gè)方面可能是需要重點(diǎn)關(guān)注的?()A.模型的性能和響應(yīng)時(shí)間B.數(shù)據(jù)的安全性和隱私保護(hù)C.系統(tǒng)的可擴(kuò)展性和穩(wěn)定性D.以上方面都需要重點(diǎn)關(guān)注二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)說明在數(shù)據(jù)分析項(xiàng)目中如何進(jìn)行項(xiàng)目管理,包括項(xiàng)目計(jì)劃制定、進(jìn)度跟蹤、風(fēng)險(xiǎn)管理等方面,并闡述項(xiàng)目管理對項(xiàng)目成功的重要性。2、(本題5分)數(shù)據(jù)分析中常使用回歸分析來研究變量之間的關(guān)系。請解釋線性回歸和非線性回歸的區(qū)別,并說明在何種情況下應(yīng)選擇非線性回歸模型。3、(本題5分)簡述數(shù)據(jù)分析師如何在團(tuán)隊(duì)中發(fā)揮領(lǐng)導(dǎo)作用,包括項(xiàng)目管理、團(tuán)隊(duì)協(xié)作等方面,并舉例說明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線視頻平臺保存了用戶的觀看歷史、搜索記錄、評分?jǐn)?shù)據(jù)等。探討怎樣利用這些數(shù)據(jù)進(jìn)行個(gè)性化的內(nèi)容推薦和視頻排序。2、(本題5分)某社交媒體平臺積累了用戶的話題參與度、群組活動數(shù)據(jù)、信息傳播路徑等。探討怎樣利用這些數(shù)據(jù)進(jìn)行社區(qū)運(yùn)營和內(nèi)容推薦優(yōu)化。3、(本題5分)某在線芭蕾舞教學(xué)平臺保存了學(xué)員身體條件數(shù)據(jù)、舞蹈技巧掌握情況、教學(xué)方法適應(yīng)性等。制定個(gè)性化的芭蕾舞教學(xué)計(jì)劃。4、(本題5分)某在線心理咨詢平臺保存了咨詢數(shù)據(jù)、用戶心理問題類型、咨詢效果反饋等。優(yōu)化咨詢師匹配和咨詢服務(wù),滿足用戶需求。5、(本題5分)一家快遞公司的同城配送業(yè)務(wù)記錄了配送數(shù)據(jù),包括貨物重量、配送距離、配送時(shí)間、費(fèi)用等。研究貨物重量和配送距離對配送時(shí)間和費(fèi)用的影響。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)在能源智能電網(wǎng)中,數(shù)據(jù)分析有助于優(yōu)化電力分配和提高電網(wǎng)穩(wěn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論