襄陽汽車職業(yè)技術(shù)學(xué)院《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
襄陽汽車職業(yè)技術(shù)學(xué)院《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
襄陽汽車職業(yè)技術(shù)學(xué)院《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
襄陽汽車職業(yè)技術(shù)學(xué)院《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
襄陽汽車職業(yè)技術(shù)學(xué)院《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁襄陽汽車職業(yè)技術(shù)學(xué)院

《P與標(biāo)志設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域準(zhǔn)確分割出來。以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的分割方法簡單高效,適用于所有類型的醫(yī)學(xué)圖像分割B.區(qū)域生長法能夠根據(jù)像素的相似性進(jìn)行分割,但容易受到噪聲的影響C.圖割算法在處理復(fù)雜的圖像結(jié)構(gòu)時表現(xiàn)不佳,難以得到準(zhǔn)確的分割結(jié)果D.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中無法處理不同大小的病變區(qū)域2、在計算機(jī)視覺的場景理解任務(wù)中,需要理解整個圖像的語義信息。假設(shè)要分析一張城市街道的圖像中包含的物體和它們之間的關(guān)系,以下關(guān)于場景理解方法的描述,正確的是:()A.單獨(dú)對圖像中的每個物體進(jìn)行識別和分類就能實(shí)現(xiàn)場景理解B.忽略圖像中的上下文信息和空間布局對場景理解沒有影響C.利用深度學(xué)習(xí)中的語義分割和圖模型可以更好地理解場景的結(jié)構(gòu)和語義關(guān)系D.場景理解只適用于簡單的室內(nèi)場景,對于復(fù)雜的戶外場景無法處理3、在計算機(jī)視覺的圖像壓縮任務(wù)中,假設(shè)要在保證一定圖像質(zhì)量的前提下,盡可能減少圖像的數(shù)據(jù)量。以下哪種圖像壓縮方法可能更有效?()A.基于離散余弦變換(DCT)的壓縮算法,如JPEGB.無損壓縮方法,如PNGC.不進(jìn)行任何壓縮,直接存儲原始圖像D.隨機(jī)刪除圖像中的部分像素4、在三維計算機(jī)視覺中,重建物體的三維形狀是一個重要任務(wù)。假設(shè)要從多視角的圖像中重建一個建筑物的三維模型,以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺的方法能夠直接從兩張圖像中準(zhǔn)確重建出物體的三維形狀B.結(jié)構(gòu)光方法在室外環(huán)境中比在室內(nèi)環(huán)境中更適用C.多視圖幾何和深度學(xué)習(xí)相結(jié)合的方法可以提高三維重建的精度和完整性D.三維重建的結(jié)果不受圖像拍攝角度和距離的影響5、對于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復(fù)為高分辨率圖像,同時保留圖像的細(xì)節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學(xué)習(xí)的超分辨率重建模型,如SRCNNC.對低分辨率圖像進(jìn)行簡單的銳化處理D.不進(jìn)行任何處理,直接使用低分辨率圖像6、在計算機(jī)視覺中,圖像分割旨在將圖像劃分為不同的區(qū)域,每個區(qū)域具有相似的特征。以下關(guān)于圖像分割的敘述,不正確的是()A.圖像分割可以基于像素的顏色、紋理等特征進(jìn)行B.深度學(xué)習(xí)方法在圖像分割中取得了顯著的成果,如全卷積網(wǎng)絡(luò)(FCN)C.圖像分割在醫(yī)學(xué)影像分析、自動駕駛場景理解等方面具有重要作用D.圖像分割的結(jié)果總是完美的,能夠準(zhǔn)確地將圖像中的所有物體都分割出來7、計算機(jī)視覺中的目標(biāo)重識別任務(wù)旨在在不同的攝像頭視角中識別出同一目標(biāo)。假設(shè)要在一個大型商場的多個攝像頭中尋找一個特定的人物。以下關(guān)于目標(biāo)重識別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過提取目標(biāo)的特征,如顏色、形狀和紋理,來進(jìn)行重識別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識別的準(zhǔn)確率C.目標(biāo)重識別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過建立目標(biāo)的特征庫,快速在多個攝像頭中進(jìn)行匹配和搜索8、在計算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域精確地分割出來,以便醫(yī)生進(jìn)行診斷和治療。這張醫(yī)學(xué)圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復(fù)雜情況時可能更具優(yōu)勢?()A.基于閾值的分割方法,根據(jù)像素值設(shè)定閾值進(jìn)行分割B.基于區(qū)域生長的分割方法,從種子點(diǎn)開始逐漸擴(kuò)展區(qū)域C.基于深度學(xué)習(xí)的語義分割算法,如U-NetD.隨機(jī)分割圖像,然后根據(jù)后續(xù)分析進(jìn)行調(diào)整9、在計算機(jī)視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要對一組風(fēng)景圖像進(jìn)行特征提取,以便后續(xù)的圖像檢索和分類任務(wù)。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡(luò)自動學(xué)習(xí)的特征10、在計算機(jī)視覺中,圖像超分辨率重建是提高圖像分辨率和質(zhì)量的技術(shù)。以下關(guān)于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過插值、基于模型的方法或深度學(xué)習(xí)方法來實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像超分辨率重建中能夠生成更清晰、逼真的細(xì)節(jié)C.圖像超分辨率重建在醫(yī)學(xué)圖像、衛(wèi)星圖像和監(jiān)控圖像等領(lǐng)域有重要的應(yīng)用D.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制11、人臉識別是計算機(jī)視覺的一個重要應(yīng)用。假設(shè)一個公司使用人臉識別系統(tǒng)進(jìn)行員工考勤。以下關(guān)于人臉識別技術(shù)的描述,哪一項(xiàng)是錯誤的?()A.它可以通過提取面部特征,如眼睛、鼻子和嘴巴的形狀和位置,來進(jìn)行身份識別B.能夠適應(yīng)不同的表情、姿態(tài)和光照變化,保持較高的識別準(zhǔn)確率C.人臉識別系統(tǒng)的安全性極高,不存在被欺騙或誤識別的可能性D.深度學(xué)習(xí)模型在人臉識別中表現(xiàn)出色,大大提高了識別性能12、在計算機(jī)視覺的姿態(tài)估計任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)我們要估計一個機(jī)器人手臂的姿態(tài),以下哪種技術(shù)通常被用于獲取準(zhǔn)確的姿態(tài)信息?()A.基于視覺標(biāo)記的姿態(tài)估計B.基于深度學(xué)習(xí)的姿態(tài)估計C.基于幾何約束的姿態(tài)估計D.基于慣性測量單元(IMU)的姿態(tài)估計13、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設(shè)我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細(xì)節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學(xué)習(xí)的方法C.基于深度學(xué)習(xí)的方法,如SRCNND.基于小波變換的方法14、在計算機(jī)視覺的車牌識別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準(zhǔn)確識別出車牌號碼。以下哪種技術(shù)可能有助于提高識別準(zhǔn)確率?()A.字符分割和單獨(dú)識別B.利用深度學(xué)習(xí)模型進(jìn)行端到端的識別C.只關(guān)注車牌的顏色特征D.隨機(jī)猜測車牌號碼15、計算機(jī)視覺在安防領(lǐng)域的應(yīng)用可以加強(qiáng)監(jiān)控和預(yù)警能力。假設(shè)要通過攝像頭實(shí)時監(jiān)測公共場所的異常行為,以下關(guān)于安防計算機(jī)視覺應(yīng)用的描述,正確的是:()A.簡單的運(yùn)動檢測算法就能準(zhǔn)確識別各種異常行為B.不考慮人群密度和環(huán)境背景對異常行為檢測的影響C.結(jié)合深度學(xué)習(xí)和行為分析模型可以提高異常行為檢測的準(zhǔn)確性和及時性D.安防領(lǐng)域的計算機(jī)視覺系統(tǒng)不需要考慮隱私保護(hù)和數(shù)據(jù)安全問題二、簡答題(本大題共4個小題,共20分)1、(本題5分)描述計算機(jī)視覺在金融領(lǐng)域的應(yīng)用。2、(本題5分)簡述計算機(jī)視覺在消防救援中的作用。3、(本題5分)解釋計算機(jī)視覺在虛擬現(xiàn)實(shí)中的角色。4、(本題5分)計算機(jī)視覺中如何進(jìn)行礦井安全監(jiān)控?三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)運(yùn)用圖像識別算法,對不同類型的家具圖像進(jìn)行分類和識別。2、(本題5分)對電影中的角色表情和情感傳遞進(jìn)行基于計算機(jī)視覺的分析。3、(本題5分)使用目標(biāo)檢測技術(shù),從地質(zhì)勘探圖像中檢測出潛在的礦產(chǎn)資源開采區(qū)域。4、(本題5分)利用深度學(xué)習(xí)算法,對不同種類的蜜餞圖像進(jìn)行分類。5、(本題5分)利用圖像識別技術(shù),對不同種類的寵物圖像進(jìn)行分類和識別。四、分析題(本大題共4個小題,共40分)1、(本題10分)觀察某博物館的展覽展示設(shè)計,分析其空間規(guī)劃、展品陳列、燈光效果、說明文字等元素如何協(xié)同工作,向觀眾傳遞豐富的信息,并營造出獨(dú)特的參觀氛圍。2、(本題10分)觀察某汽

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論