云南警官學院《線性代數理論教學》2023-2024學年第一學期期末試卷_第1頁
云南警官學院《線性代數理論教學》2023-2024學年第一學期期末試卷_第2頁
云南警官學院《線性代數理論教學》2023-2024學年第一學期期末試卷_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁云南警官學院《線性代數理論教學》

2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共8個小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、若級數收斂,那么級數()A.一定收斂B.一定發(fā)散C.可能收斂也可能發(fā)散D.以上都不對2、已知向量a=(1,-1,2),向量b=(2,1,-1),求向量a與向量b的向量積。()A.(-1,5,3)B.(1,-5,-3)C.(-1,-5,-3)D.(1,5,3)3、曲線在點處的切線方程是()A.B.C.D.4、函數的極大值點是()A.B.C.D.不存在5、已知向量,向量,求向量與向量的夾角余弦值是多少?()A.1B.C.D.6、函數,則該函數的奇偶性為()A.奇函數B.偶函數C.非奇非偶函數D.既是奇函數又是偶函數7、計算極限的值是多少?()A.B.C.D.8、設函數z=f(xy,x2+y2),其中f具有二階連續(xù)偏導數。求?2z/?x?y。()A.f?'+xf?'+y(f??''+2xf??''+f??''+2yf??'')B.f?'+xf?'+y(f??''+xf??''+f??''+yf??'')C.f?'+xf?'+y(f??''+3xf??''+f??''+3yf??'')D.f?'+xf?'+y(f??''+4xf??''+f??''+4yf??'')二、填空題(本大題共5小題,每小題4分,共20分.)1、有一數列,已知,,求的值為____。2、設函數,求的值為____。3、求由曲線與直線,所圍成的圖形繞x軸旋轉一周所得到的旋轉體的體積,利用定積分求旋轉體體積公式,結果為_________。4、計算極限的值為____。5、求過點且與平面垂直的直線方程為______。三、解答題(本大題共2個小題,共20分)1、(本題10分)設函數,求函數在區(qū)間[1,e]上的最值。2、(本題10分)已知向量,,求向量與的夾角。四、證明題(本大題共2個小題,共20分)1、(本題10分)設函數在區(qū)間[a,b]上二階可導,且。證明:對于區(qū)間[

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論