東北財(cái)經(jīng)大學(xué)《視覺(jué)導(dǎo)向設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
東北財(cái)經(jīng)大學(xué)《視覺(jué)導(dǎo)向設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
東北財(cái)經(jīng)大學(xué)《視覺(jué)導(dǎo)向設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
東北財(cái)經(jīng)大學(xué)《視覺(jué)導(dǎo)向設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
東北財(cái)經(jīng)大學(xué)《視覺(jué)導(dǎo)向設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)東北財(cái)經(jīng)大學(xué)

《視覺(jué)導(dǎo)向設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的視覺(jué)跟蹤任務(wù)中,目標(biāo)在運(yùn)動(dòng)過(guò)程中可能會(huì)發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準(zhǔn)確性,以下哪種策略可能是有效的?()A.模型更新機(jī)制B.多特征融合C.抗遮擋處理D.以上都是2、在計(jì)算機(jī)視覺(jué)中,以下哪種方法常用于圖像的語(yǔ)義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機(jī)制D.以上都是3、計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況。假設(shè)要通過(guò)圖像分析判斷農(nóng)作物的病蟲害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲害的程度B.不同農(nóng)作物品種和生長(zhǎng)階段對(duì)病蟲害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評(píng)估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對(duì)計(jì)算機(jī)視覺(jué)的應(yīng)用沒(méi)有挑戰(zhàn)4、計(jì)算機(jī)視覺(jué)中的遙感圖像分析用于獲取地球表面的信息。假設(shè)要從衛(wèi)星遙感圖像中分析土地利用類型和植被覆蓋情況,同時(shí)要克服圖像的大尺度和復(fù)雜的地物分布。以下哪種遙感圖像分析方法最為有效?()A.基于光譜特征的分析B.基于紋理特征的分析C.基于對(duì)象的圖像分析D.基于深度學(xué)習(xí)的分析5、計(jì)算機(jī)視覺(jué)中的光流計(jì)算用于估計(jì)圖像中像素的運(yùn)動(dòng)。假設(shè)要對(duì)一個(gè)快速運(yùn)動(dòng)的物體進(jìn)行光流估計(jì),同時(shí)場(chǎng)景中存在光照變化和噪聲干擾。在這種情況下,以下哪種光流計(jì)算方法能夠提供更準(zhǔn)確和穩(wěn)定的結(jié)果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法6、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛中的應(yīng)用至關(guān)重要。假設(shè)要通過(guò)車載攝像頭識(shí)別道路上的交通標(biāo)志和標(biāo)線,以下關(guān)于應(yīng)對(duì)復(fù)雜環(huán)境變化的策略,哪一項(xiàng)是不正確的?()A.利用多模態(tài)數(shù)據(jù)融合,如結(jié)合攝像頭和激光雷達(dá)的信息B.定期更新模型,適應(yīng)新出現(xiàn)的交通標(biāo)志和標(biāo)線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對(duì)不同天氣和光照條件下的數(shù)據(jù)進(jìn)行增強(qiáng)訓(xùn)練7、計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。假設(shè)要檢測(cè)生產(chǎn)線上產(chǎn)品的表面缺陷,以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺(jué)技術(shù)的描述,正確的是:()A.傳統(tǒng)的機(jī)器視覺(jué)方法在檢測(cè)復(fù)雜的表面缺陷時(shí)比深度學(xué)習(xí)方法更可靠B.深度學(xué)習(xí)模型需要大量的有缺陷和無(wú)缺陷樣本進(jìn)行訓(xùn)練,才能準(zhǔn)確檢測(cè)出各種缺陷C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺(jué)系統(tǒng)不需要考慮實(shí)時(shí)性和準(zhǔn)確性的平衡D.產(chǎn)品的顏色和材質(zhì)對(duì)表面缺陷檢測(cè)的結(jié)果沒(méi)有影響8、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有重要作用。假設(shè)要在VR環(huán)境中實(shí)現(xiàn)真實(shí)感的物體交互,以下哪種技術(shù)可能對(duì)準(zhǔn)確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺(jué)B.光場(chǎng)成像C.結(jié)構(gòu)光D.運(yùn)動(dòng)捕捉9、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對(duì)一張受到嚴(yán)重噪聲污染的圖像進(jìn)行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時(shí)很好地保留圖像的細(xì)節(jié)B.中值濾波對(duì)椒鹽噪聲的去除效果不佳C.基于深度學(xué)習(xí)的圖像去噪方法可以自適應(yīng)地學(xué)習(xí)噪聲模式和圖像特征D.圖像去噪不會(huì)引入任何新的失真或模糊10、在計(jì)算機(jī)視覺(jué)中,人臉檢測(cè)和識(shí)別是重要的應(yīng)用方向。以下關(guān)于人臉檢測(cè)和識(shí)別的說(shuō)法,不正確的是()A.人臉檢測(cè)旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識(shí)別是在檢測(cè)到人臉的基礎(chǔ)上,對(duì)人臉的身份進(jìn)行識(shí)別和驗(yàn)證C.深度學(xué)習(xí)方法在人臉檢測(cè)和識(shí)別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測(cè)和識(shí)別技術(shù)已經(jīng)非常成熟,不存在任何錯(cuò)誤率和安全隱患11、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標(biāo)。假設(shè)我們要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種目標(biāo)跟蹤算法能夠更好地處理目標(biāo)的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學(xué)習(xí)的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法12、在計(jì)算機(jī)視覺(jué)的無(wú)人駕駛領(lǐng)域,環(huán)境感知是關(guān)鍵環(huán)節(jié)。假設(shè)要讓無(wú)人駕駛汽車準(zhǔn)確感知周圍的道路狀況、車輛和行人,同時(shí)要應(yīng)對(duì)惡劣天氣和復(fù)雜交通場(chǎng)景。以下哪種環(huán)境感知技術(shù)在這種高要求的應(yīng)用中發(fā)揮著重要作用?()A.激光雷達(dá)感知B.攝像頭視覺(jué)感知C.毫米波雷達(dá)感知D.以上技術(shù)融合感知13、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是對(duì)視頻中的人體動(dòng)作進(jìn)行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識(shí)別其中運(yùn)動(dòng)員的各種動(dòng)作,以下哪種方法能夠有效地捕捉動(dòng)作的時(shí)空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法14、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,假設(shè)要跟蹤一個(gè)在人群中移動(dòng)的物體。以下關(guān)于跟蹤算法的選擇,哪一項(xiàng)是需要著重考慮的?()A.算法對(duì)目標(biāo)外觀變化的適應(yīng)性B.算法的計(jì)算復(fù)雜度,越低越好C.算法是否能夠處理多個(gè)同時(shí)移動(dòng)的目標(biāo)D.算法在處理靜態(tài)場(chǎng)景時(shí)的性能15、計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的應(yīng)用越來(lái)越廣泛。假設(shè)要檢測(cè)電子電路板上的微小缺陷,以下關(guān)于圖像采集設(shè)備的選擇,哪一項(xiàng)是最為關(guān)鍵的?()A.選擇高分辨率的數(shù)碼相機(jī),獲取清晰的圖像B.選用具有大景深的鏡頭,確保整個(gè)電路板都清晰成像C.采用高速攝像機(jī),快速采集大量圖像D.選擇價(jià)格低廉的圖像采集設(shè)備,降低成本二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)計(jì)算機(jī)視覺(jué)中如何實(shí)現(xiàn)虛擬角色的動(dòng)作捕捉?2、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在租賃行業(yè)中的應(yīng)用。3、(本題5分)簡(jiǎn)述圖像的傅里葉變換的用途。4、(本題5分)簡(jiǎn)述圖像銳化的目的和方法。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)開發(fā)一個(gè)能夠識(shí)別不同種類哺乳動(dòng)物的計(jì)算機(jī)視覺(jué)系統(tǒng)。2、(本題5分)設(shè)計(jì)一個(gè)系統(tǒng),利用計(jì)算機(jī)視覺(jué)檢測(cè)公園內(nèi)的垃圾是否及時(shí)清理。3、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)博物館展品的保護(hù)情況。4、(本題5分)運(yùn)用圖像識(shí)別技術(shù),檢測(cè)銀行金庫(kù)內(nèi)物品的存放情況。5、(本題5分)基于計(jì)算機(jī)視覺(jué)的智能倉(cāng)儲(chǔ)管理系統(tǒng),實(shí)現(xiàn)貨物的自動(dòng)識(shí)別和定位。四、分析題(本大題共4個(gè)小題,共40分)1、(本題10分)觀察某健身房的器材使用說(shuō)明設(shè)計(jì),分析其如何通過(guò)簡(jiǎn)潔的圖示、文字說(shuō)明、安全提示等指導(dǎo)用戶正確使用健身器材。2、(本題10分)分析某科技公司的企業(yè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論