




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10995
ImpactsofDisastersinConflictSettingsEvidencefromMozambiqueandNigeria
KarimaBenBih
ChloeDesjonqueres
BramkaJarafino
ElodieBlanc
SoleneMasson
WORLDBANKGROUP
Urban,DisasterRiskManagement,ResilienceandLandGlobalDepartmentDecember2024
PolicyResearchWorkingPaper10995
Abstract
Thispaperestimatesthedifferentiatedeconomicimpactofnaturalhazard-relateddisasters(thespecificdisastersandclimateshocksstudiedherebeingfloods)whentheyoccurinconflictversusnon-conflictaffectedareas.Existinglit-eratureshowsthatdisastersandclimateshockscancausesignificantdistresstocountriesandpeopleonaninstitu-tionalandhouseholdlevel.However,assumptionsaremadethattheirimpacttendstobelargerinconflict-affectedareas,withlittleevidenceavailableonthedifferentiatedextentofthesedamages.Thispaperinvestigateswhether,andtowhatextent,thepresenceofconflictshasamplifiedtheimpactsoffloodsoneconomicactivityandpeople,andhamperedrecovery.Thepaperappliesa“top-down”approachtoesti-matingthedifferentialimpactsofdisastersandclimate
shocksbetweenconflictandnon-conflictaffectedareasusingsatellite-derivedimageryofnightlightradianceasaproxyforeconomicactivity,alongwithgeospatialfoot-printsoffloods.Theanalysisconsiderstwocasestudies:the2019tropicalcyclonesIdaiandKennethandsubsequentfloodsinMozambique,andtheJuly2022floodsinNige-ria.Usingdifference-in-differenceestimations,theanalysisfindsthattherearesignificantdifferencesindisasterandclimateshockimpactsandrecoverybetweenconflictandnon-conflictaffectedareas.Particularly,thereisagreaterdeclineineconomicactivityandalongerrecoverytimeinconflictaffectedareas,asproxiedbythegreaterchangeintheintensityofnightlightradiance.
ThispaperisaproductoftheUrban,DisasterRiskManagement,ResilienceandLandGlobalDepartment.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/
prwp.Theauthorsmaybecontactedatkbenbih@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
ImpactsofDisastersinConflictSettings:EvidencefromMozambiqueandNigeria
Novembre20,2024
KarimaBenBih,WorldBank
ChloeDesjonqueres,WorldBankBramkaJarafino,WorldBank
ElodieBlanc,MotuEconomicandPublicPolicyResearchCenterSoleneMasson,WorldBank
Keywords:EconomicImpactsofDisastersinCon?ict,Climateshocks;EarthObservations;NPP-VIIRS;Floods;Nigeria;Mozambique;Con?ictsin?uenceonDisasterImpactsandRecovery;GDP.
JELClassi?cation:D74;O23;O47;O57;Q34;Q54.
TheauthorsaregratefultoStephaneHallegatte,OscarIshizawa,andJunRentschlerfortheirthoughtfulcomments,suggestions,andguidance.
2
Introduction
Theaimofthisstudyistoexaminethedifferentialimpactofdisastersandclimateshocksonpopulationsincon?ict-affectedregions,speci?callyinvestigatingtherepercussionsof?oodingincon?ictversusnon-con?ictareas.Usingremotesensingtechnology,weattempttoovercomethechallengeofdatascarcityincon?ict-affectedcountries,allowingustoaccountforshort-termimpactsofrecentdisasterandclimateshockevents.Despitetheinherentlimitationsofusingnightlightintensityasaneconomicactivityindicator,itprovidesanempiricalfoundationfortheanalysisandenoughobservationsforanex-postquasi-experimentalimpactevaluation.Weemployadifference-in-differenceeconometricapproach,usingsatelliteimageryofnightlightradiancealongsidegeospatialdataon?oodandcon?ictevents.ThismethodologicalframeworkisappliedtoassesstheaftermathoftheMarch-April2019FloodsinMozambiquefollowingCyclonesKennethandIdai,aswellasthe2022?oodsspanningJulytoOctoberinNigeria.
Resultsshowsigni?cantdisparitiesintheeffectsofdisastersandclimateshocksbetweencon?ict-affectedandnon-con?ict-affectedareas.Speci?cally,weobserveamorepronounceddeclineineconomicactivitiesincon?ict-affectedregions.
Thepaperisstructuredasfollows.The?rstsectionoutlinesthecontextof?oodandcon?icts.Itpaysattentiontotheinterconnectednessofcon?ictanddisastersandclimateshocks,outliningthemethodologyandempiricalstrategyderivedtoestimatesuchex-postimpact.Inthesecondsection,wepresenttheresultsandsupportingdataderivedfromthestudy,includingthecasestudiesonMozambiqueandNigeria.Finally,wediscusslimitationsaswellasbroaderimplicationsbeforeconcluding.
Context:Floodimpactandcon?ictaffectedpopulation(Literature)
1.Impactof?ood
Quantitativeeconomicanalyseshavefrequentlyusednightlightradianceasproxyforeconomicactivity(Chen&Nordhaus,2011;Hendersonetal.,2012).Thesehavealsobeenusedtoestimatetheimpactsofweathervariabilityanddisastersandclimateshocks(Bertinelli&Strobl,2013;Elliottetal.,2015;Felbermayretal.,2022;Heger&Neumayer,2019;MirandaMonteroetal.,2017)and,morespeci?cally,?oods(Kocornik-Minaetal.,2020).Mostanalysesusingnightlightdatausuallydemonstrateanegativeimpactofdisasterandclimateshocksonnightlightsbutwitheffectsresorbingwithintheyearfollowingtheevent(Bertinelli&Strobl,2013;Elliottetal.,2015;Gillespieetal.,2014).Schippers&Botzen(2023)?ndthatforaseveredisastersuchasHurricaneKatrina,theeffectcanbelongerlasting.
However,thereisadebateabouttheaccuracyofnightlightsasaproxyforeconomicactivity.Criticsarguethatnightlightintensitymaynotcaptureeconomicactivityaccuratelyinallcontexts,suchashighlyruralareas,wherechangesinlightingefficiencycouldaffecttheamountoflightobservedwithoutnecessarilyre?ectingchangesineconomicactivity.Possiblyotherculturalandsocialfactorsorgovernmentpoliciesonlightingcouldalsoin?uencetheamountofnightlightobserved.
3
Despitetheseconcerns,nightlightshaveseveraladvantagesasadatasource.Theyaregloballyavailable,providingcoverageeveninregionswhereeconomicdatamightbescarceorunreliable.Nightlightsalsohaveastandardspatialresolutionandtimeintervals,whichallowsforconsistentcomparisonsovertimeandacrossdifferentgeographicareas.Whenprocessedandinterpretedcorrectly,takingintoaccountthepotentiallimitationsandbiases,nightlightdatacanindeedserveasausefulproxyfortheintensityofeconomicactivity(Gibsonetal.,2021).
2.Relationshipbetweendisasterandcon?ict-affectedpopulation
Explicitstudiesoftherelationshipbetweendisasterandclimateriskandcon?icthavegainedtractionoverthepastdecade(Siddiqi,2018),speci?callyfocusingonco-locationandcausationdebatesassociatedwithclimate-relatedhazards,violentandarmedcon?ict,andinsecurity(Gemenneetal.,2014;Gleditsch,2012).Often,previousstudieshavefocusedontheimpactsofdisastersoncon?icts–whethertheyexacerbateexistingcon?icts,ignitenewones,orinsomecaseshaltongoingcon?icts(Nel&Regharts,2008;Schleussneretal.,2016;Slettebak,2012;Ghimireetal.,2015;Nardullietal.,2015).Duetosuchuncertainimpactsofdisastersanddisasterrecoveryeffortoncon?icts,otherstudiesexplorehowdisasterriskreductionandrecoverymeasuresshouldbedonedifferentlyincon?ictcontexts(Brzoska,2018;Petersetal.,2019;WorldBank,2016).
Despitethegrowingbodyofliteraturerelatedtotheintricaciesofdisastersandcon?icts,lessattentionhasbeengiventounderstandingandquantifyingthein?uencesofcon?ictsondisasterimpacts–theadditionaleconomicimpactsofdisastersshouldtheytakeplaceincon?ictareasanditseffectoncon?ict-affectedpopulation–aswellasthecausalpathwaysandmechanismsbehindsuchadditionalimpacts.Theabsenceofcomprehensiveeconomicdataandgroundtruthdatatovalidatedisasterimpacts,coupledwiththecomplexityofde?ningcon?ict-affectedpopulationsareamongthescienti?cchallengesprohibitinganalyzingthein?uenceofcon?ictsondisasterimpacts.Thispaperseekstoaddressthisgapandsupportfurtherquantitativeanalysesontheadditionalimpactonhouseholds’welfareandnations’economicgrowthincountriesexperiencingthesecompoundedcrises.
EmpiricalstrategyData
Inthisstudy,weusepixel-levelgeospatialdata,includingnightlights,?oodfootprints,populationdensity,andadministrativeboundaries,toeconometricallyanalyzethespeci?ceffectsof?oodeventsinMozambiqueaswellasNigeria'scon?ictandnon-con?ictaffectedregions.
Nightlightsdata
Furthermore,weutilizecompositeimagesofnighttimeradiancedatacapturedbytheVisibleInfraredImagingRadiometerSuite(VIIRS)sensoraboardtheNASA-NOAASuomisatellite.Thesemonthlycompositesareavailablesince2012ataresolutionof15arcsecondsby15arcseconds(approximately463metersattheequator).VIIRSDayNightBands(DNB)dataexcludegridcellsaffectedbylightning,straylight,lunarillumination,andcloudcover(Elvidgeetal.,2017).WefavorVIIRSdataovertraditionallyuseddatafromtheDefenseMeteorologicalSatelliteProgram(DMSP)
4
duetoseverallimitationsidenti?edinthelatter,includingblurring,lackofcalibration,top-coding,andpoorsuitabilityasaGDPproxyinruralareas(Gibsonetal.,2021).
ToaddresschallengesassociatedwithusingVIIRSnightlightsdataasaproxyforeconomicactivity(Skou?asetal.,2021),weapply?lterstoremovepixelswithextremevalues(i.e.,werestrictthesampletovaluescomprisedbetweenthe1stand99thpercentiles)andaccountforthenumberofobservationsavailableperpixel.
1
Wecalculatetheaveragenightlightradiancemonthlyspanningfrom1to6monthsbeforeandaftertheoccurrenceofthe2019?oodsinMozambiqueandthe2022?oodsinNigeria.Twovariablesarecomputed:"avg_rad,"representingthenightlightradianceatthe?oodedpixellevel,and"avg_radBuff05"whichaveragesforeach?oodedpixelthenightlightradianceofthepixelitselfandadjacentpixelswithina0.5-kilometerbuffer.
2
Thelattervariableispreferredtoensuremaximumobservationavailabilityandtocapturetheimpactonindirectlyaffectedgridcells.
3
Wealsoextractedtheassociatedvariables"cf_cvg"and"avg_cvgBuff05",whichindicatethenumberofcloud-freeobservationsinthemonthusedtocalculateaveragenightlightradiance.
4
Flooddata
FloodeventsaredeterminedbasedonthemethodologyoutlinedbyDeVriesetal.(2020).WeuseS1GroundRangeDetectedscenesfromtheSyntheticApertureRadarsensorsonboardtheSentinel-1satellite,partoftheEuropeanSpaceAgency'sCopernicusprogram(ESA,2023).ThesescenesprovidedataonZ-scoresderivedfromSARbackscattertimeseriesofsinglebandco-polarizationverticaltransmitverticalreceive(VV)anddualcross-polarizationverticaltransmithorizontalreceive(VH).SinceOctober2014,thisdatahasbeenavailableevery6daysata10-meterresolution.
Floodsarede?nedastheunexpectedpresenceofwaterobservedinanygivenpixel.Todistinguish?oodsfrompermanentorseasonallyoccurringsurfacewater,weutilizethehistoricalLandsat-derivedmonthlywaterprobabilitiesdatasetproducedbytheEuropeanCommission’sJointResearchCentre(Pekeletal.,2016).Floodcon?denceiscategorizedashighifbothVVandVHZ-scoresfallbelowtheidenti?edthresholds,andasmediumifonlyoneofthesepolarizationsisbelowthethresholds.Weclassify?oodsinareasnotdesignatedaspermanentopenwater(withaprobabilityofwatergreaterthan95%)orwithahistoricalinundationprobabilitylessthanorequalto25%.Foreachcasestudy,wepreselectahistoricalreferenceperiodbasedonexistingknowledgeofpast?oodingeventsintherespectivearea.
Con?ictdata
Con?ictareasareidenti?edutilizinggeocodeddatasourcedfromtheArmedCon?ictLocation&EventDataProject(ACLED)database(ACLED,2023),coveringtheperiodfromJanuary2012toDecember2023forNigeriaandfromJanuary2016toDecember2023inMozambique.Forthepurposeofthisstudy,con?ict,asde?nedbytheWBG(2024)is,“astateofacuteinsecurityresultingfromtheuseoflethalforcebyagroup—encompassingstateforces,organizednon-stateentities,orotherirregularbodies—drivenbyapoliticalpurposeormotivation.Suchforcemaymanifest
1Pixelswithnocloud-freeobservationsareexcluded.
2Apixelisaround100m2,wetestedwithoutbuffer,500mand1kmandchosea500mbuffertointroducemorevariationofnightlightintensitywithinfloodedpixels.
3Atimeseriesdepictingbothvariablesisprovided
inFigure16
intheappendicesforNigeria.
4Thecorrespondingtimeseriesforispresented
inFigure17for
Nigeria.
5
bilaterally—involvingengagementsamongmultipleorganized,armedfactions,occasionallyleadingtocollateralcivilianharm—orunilaterally,whereinagrouptargetsciviliansdeliberately.”Furthermore,forthemostprecisedepictionofareasseverelyaffectedbycon?ict,fatalitiesstemmingfromprotests,riots,andstrategicdevelopment(asperACLEDdata)havebeenexcluded,maintainingconsistencywiththeWBGClassi?cationofFragilityandCon?ictSituation’s(FCS)objectivesandthescopeofthisstudy.Ouranalysisfocusesoncon?ictrecordscategorizedas‘Battles’,‘Explosions/Remoteviolence’,and‘Violenceagainstcivilians’.Thesetypesofcon?ictsareselectedduetotheirviolentnature.
Settlementdata
Todeterminetheurbanizationlevel,weusetheGlobalHumanSettlementLayer(GHSL)whichcombinesgriddedpopulationdataestimatedbyCIESINGPWv4.11GHS-POPR2023andbuilt-upsurfaceinformationfromLandsatandSentinel-2dataGHS-BUILT-SR2023(Schiavinaetal.,2023).
5
Thesettlementdataareavailableatthe1kmresolution.Weconsiderthedatafortheyear2020,whichistheclosestavailabletothetimeperiodofinterestforbothcountries.IncaseofNigeria,wede?ned‘urban’areasascellsde?nedashigh-densitycluster,
6
‘suburban’asmoderate-densitycluster,
7
‘rural’asruralandlow-densityclusters
8
and‘Uninhabited’asverylowdensityruralandwatercoveredareas
(Figure1)
.
9
5InGoogleEarthEngine,thisImagecollectionisaccessiblethrough
/earth
-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_SMOD.
6The‘urban’categoryincludestheclasses30:“UrbanCentregridcell”,23:“DenseUrbanClustergridcell”.
7The‘suburban’categoryincludestheclasses22:“Semi-denseUrbanClustergridcell”and21:“Suburbanorperi-urbangridcell”.
8The‘rural’categoryincludestheclasses13:“Ruralclustergridcell”and12:“LowDensityRuralgridcell”.
9The‘uninhabited’categoryincludestheclasses11:“Verylowdensityruralgridcell”and10:“Watergridcell”.
6
Figure1.SettlementcategoriesinNigeria
Populationdata
Tomaintainconsistencywithsettlementdata,populationdensityestimatesatthegridcelllevelaresourcedfromtheHigh-ResolutionSettlementLayer(HRSL)dataset(FacebookConnectivityLabandCenterforInternationalEarthScienceInformationNetwork-CIESIN-ColumbiaUniversity.,2016).
Thesedataareavailableataresolutionof1arc-second(approximately30meters)fortheyear2020.Additionally,alternativepopulationdataareextractedfromtheWorldPopdatabase(Linardetal.,2012;WorldP,2024),availableataresolutionof100metersfortheyear2020.
Table1
belowdescribesthevariablesusedintheanalysisof?oodandcon?ictimpactsoneconomicactivity,asmeasuredbynightlightchanges.The‘lat’(latitude)and‘lon’(longitude)variablesallowforlocationmappingandsituatingtheanalysisspatially.The'months_EE'variableaidsinunderstandingthetemporaleffectsof?oodsbyindicatingmonthsaftertheeventandnegativevaluesindicatingthemonthspreceding.
7
The'?ood'variableiscrucialforassessingtheimpactof?oodswithvaryingdegreesofdatareliability.'PopDens'providesinsightsintohowpopulationdensitymightin?uenceorbein?uencedbyspeci?c?oodevents.Thevariables'cf_cvgBuff05'and'avg_radBuff05'describedabove,measureeconomicactivitythroughcloudobservationsandnightlightradiance,respectively.Additionally,theyareaveragedoveradjacentpixelstoprovidecontextforeachlocation.
‘Treated'and'Treated_after'distinguishareasaffectedbycon?ictbeforeandafterthe?oodineachcountry:March-April2019aremonthswherethe?oodoccurredinMozambiquewhileJuly2022wasconsideredasthe?oodingmonthinthisanalysisforNigeria.Thisisessentialfordeterminingthecausalinferenceofcon?ictimpact.'Settlement'and'Urban_Suburban'categorizeurbanizationlevelstounderstandhowdifferenttypesofareasareaffectedbyandrespondtoboth?oodsandcon?ictevents.Lastly,'Fatalities'providesadirectmeasureofthehumancostofcon?icts.
Thesevariablescollectivelyenableacomprehensiveanalysisoftheeffectsof?oodsandcon?ictswhentheyco-occurinthesamelocation.Theyareusedtoanalyzetheimpactsof?oodsandcon?ictonspeci?caspectsofeconomicactivity,aspotentiallyinferredbynightlightchanges.
Table1
describesthesevariables,theirunitsofmeasurements,andhowtheywillbeusedintheanalysis.
Table1.Descriptionofvariables
Variables
Description
Unit
lat
latitude
Decimalcoordinates
lon
longitude
Decimalcoordinates
months_EE
Monthsincetheevent
Months(positiveifafterevent,negativeifbeforeevent)
flood
Floodvariable
=1or2ifmediumreliability,=3ifhighreliability
PopDens
HRSLpopulationdensity
Person/km2
cf_cvgBuff05
Totalnumberofcloud-free
observationsthatwentintoeach
pixel(averagedovertheadjacent
pixels)
avg_radBuff05
Averagenightlightradiancevalues(averagedovertheadjacentpixels)
nanoWatts/sr/cm2
Treated
Dummyvariablerepresenting
conflict-affectedarea
=1ifsubjecttoaconflictwithinthebufferareabeforethefloods,=0otherwise
Treated_after
Dummyvariablerepresenting
conflict-affectedarea
=1ifsubjecttoaconflictwithinthebufferareaafterthefloods,=0otherwise
settlement
DegreeofUrbanization
=11ifuninhabited,=12ifrural,=21ifsuburbanand=23ifurban
Urban_Suburban
Urbanizationdummyvariable
=1ifurbanorsuburban,=0otherwise
Fatalities
Totalnumberoffatalitiesassociatedwithconflictswithinthebufferarea
Overallempiricalstrategy
Todifferentiatetheimpactof?oodsoneconomicactivitypriortothe?oodbetweencon?ict-affected(treatmentgroup),andnon-con?ictaffected(controlgroup)areas,we?rstrestrictthesampleto?ood-impactedpixels.Wethenapplythedifference-in-differencesregressionmethod,aquasi-experimentaltechniquecommonlyusedforex-postimpactevaluations.Theunderlyingconcept
8
involvescomparingtwogroupsovertime.Duetotheirdistinctcharacteristics,weexpectdifferencesinoutcomesbetweenthegroups.However,theevolutionofthesedifferingoutcomesovertime,whileholdinggroupcharacteristicsconstant,shouldfollowasimilartrend(i.e.,thecommontrendassumption)untilanexogenousshockoccurs.Thepresenceofthisparalleltrendiscrucialforestablishingcausalevidenceofimpact.Thedifference-in-differencesresearchdesignisparticularlysuitablefor‘event’studiesandthequanti?cationoftheimpactofunexpectedshocksoneconomicoutcomes.Thismethodhasbeenextensivelyemployedinthereviewedliterature(Card&Krueger,2000;Galianietal.,2005).Inourcasestudies,weareusingthecanonicaldifferenceindifference,whichmeanstwogroupsandtwotimeperiods(beforeandafter).
Thedifference-in-differenceregressionisspeci?edasfollows:
yi,t=Treatediβ1+postperiodtβ2+Treatmenti,tβ3+covariatesi,tβ4+εit(1)
whereyi,tistheaveragelogofnightlightsdataforeach?oodedpixeliattimet.Theuseofremotesensingdataallowsustoexploreimmediatetoshorttermimpactofthe?oodoverourtwogroups.Treatediisadummyvariableequalto1for?oodedpixelilocatedwithinthecon?ictbufferzonebeforethe?oodevent,andto0for?oodedpixelilocatedinanon-con?ictaffectedareabeforethe?oodevent.postperiodtisadummyvariablethatrepresentstheperiodaftertheexogeneousshock.
10
Treatmentitisthetreatmentvariable,i.e.,thevariableofinterestinadifference-in-differencespeci?cationwhichaccountsfortheinteractionofthetreatedandPostperiodvariable;covariatesitisthesetofadditionalexplanatoryvariablesuspectedtoimpactthelevelofnightlightsradiance;andεitisanindependentandidenticallydistributederrorterm,clusteredattheadministrativelevel2,toavoidspatialautocorrelation.
Oneofthechallengesinouranalysisisthede?nitionofcon?ict-affectedareas.Con?icteventsinMozambiqueareclusteredgeographicallyassuchthatitisreadilyascertainablewhatregionsaremostimpactedbytheseevents,andthusde?nedascon?ict-affectedareasforthepurposeofthisstudy.
Duetothecomplexityandwidegeographicalspanofviolentandnon-violentcon?icteventsinNigeria,con?ict-affectedareasinNigeriaarenotde?nedbasedonnumberofeventsalonebutarebasedontheWBGFCScon?ictclassi?cation.Thisclassi?cationusespubliclyavailabledatatoannuallyassesscountries,pinpointingthosemostaffectedbyfragilityandcon?ict.ThismethoddifferentiatesbetweenterritoriesexperiencingFragilityand/orCon?ictsituations.Alignedwiththisde?nition,thestudyemploysthefollowingcon?ictindicatorsidenti?edbytheFCSindextodelineatecon?ict-affectedareasinNigeriaattheLocalGovernmentArea(LGA)scale:
10Thisvariabletakesavalueof1ift=August2020toestimatetheeffect1monthafterthedisaster,t=November2020fortheeffect3monthsafterthedisaster,etc.and0otherwise.
9
(1)Forongoingcon?ictaccordingtoACLED,(a)anabsolutenumberofcon?ictdeathsabove250,and(b)above2deathsper100,000population.
(2)ForrapidlydecliningsecuritysituationsaccordingtoACLED,(a)anabsolutenumberofcon?ictdeathsabove250,(b)between1and2deathsper100,000population,and(c)thenumberofcasualtieshasmorethandoubledinthepastyear.
Differenceindifferencemethodologyreliesondifferentassumptionswherethecommontrendisthemostimportantone.Tovalidatethisassumptionofcommontrendsbeforethe?ood,indicatingthatthedependentvariableforbothgroupswouldhavecontinuedmovingsimilarlyintheabsenceoftheextremeevent,weconductatestbycomparingchangesinthedependentvariableforthetreatmentandcontrolgroupsovermultipleperiodsprecedingthe?oods(i.e.estimatethedifference-in-differencebetweent-2andt-1,thet-3andt-2,etc.).Thisanalysishelpsascertainwhethertheeconomictrajectoriesofthetwogroupswereindeedparallelbeforetheoccurrenceofthe?oodevents.Theregressionisspeci?edas:
yi,t=Treatediβ1+postperiodtβ2+Treatmenti,tβ3+covariatesi,tβ4+εit(2)
Variablesarethesameasspeci?cation(1)buttheperiodofinterestisnotthesame.Weprovidestatisticaltestsaswellasthecommontrendvisuallyrepresentedforeachofourcasestudy.
Casestudyselection
Thestudy’sfocusondisasterimpactsincon?ictvsnoncon?ictaffectedareaslimitsthepoolofcountrycasestudies.Thereareseveralaspectsthatdeterminethechoiceofthecasestudycountries.First,theselectedcountriesneedtohavegeographicallylocalizedcon?icts,allowingforacontrolledcomparisonwherecon?ictistheprimarydifferingfactorofdisasterimpacts.Second,thereisarequirementthattheselectedcountrieswereaffectedbyarapidonsetdisasterinrecentyears,toincreasethepossibilityofavailabledatainassessingthedisaster’simpacts.Ifmultiplecountriesareselected,therapid-onsetdisastereventshadtohappenwithinthesametimeframe.Thiscriterionensuresthatthecasestudiesprovideafocusedexaminationoftheimpactofdisastersoneconomicactivitiesincon?ictsettingvsnoncon?ictsettings,withouttheconfoundingeffectsofdifferentcountryconditionsortimelinesofdisasterevents.Third,thedisasterfootprintsshouldcoverasubstantialgeographicalextentoftheselectedcountries’areaasopposedtolocalizeddisasters.Thiscriterionistoensurethattherearebothcon?ict-andnon-con?ict-affectedareashitbythedisaster.Giventhecriteriaabove,weselectedthe2019TropicalCyclonesIdaiandKennethinMozambiqueandtheJuly2022?oodsinNigeriaascasestudies.Furthermore,thetwocountrieshavecomparablecontextsintermsofcon?ictcharacteristicswhicharecrucialforisolatingthevariableofcon?ictincomparativeanalysis.
Mozambiquecasestudy:2019TropicalCyclonesIdaiandKenneth
The?rstcasestudyfocusesonthe?oodsinMozambiqueafterTCIdaiandKenneth.In2019,MozambiquewashitbytwoTropicalCyclones(TC),Idai(March4-15)andKenneth(April25-28),bothofwhichhavebeenquali?edasamongthestrongestTCsonrecordintheSouthernHemisphere(Charruaetal.,2021).Thenortheasternregionofthecountryischaracterizedbyawidespreadlong-
10
termhumanitariansituationduetotheongoingcon?ict,datingbackto2017.Asdepictedin
Figure
2,
TCIdai?rstmadelandfallonMarch4,2019,untilMarch9,beforechangingd
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 翻新工程施工合同
- 固定期限勞務(wù)派遣合同
- 2025年IT行業(yè)數(shù)據(jù)安全措施及整改計(jì)劃
- 2025年智慧城市法律服務(wù)計(jì)劃
- 2025年小學(xué)學(xué)校數(shù)字化教學(xué)計(jì)劃
- 客戶服務(wù)行業(yè)180天培訓(xùn)計(jì)劃
- 生物學(xué)科綜合實(shí)踐教學(xué)計(jì)劃
- 部編版五年級(jí)語(yǔ)文特色課程計(jì)劃
- 2025年春小學(xué)語(yǔ)文教研組信息技術(shù)應(yīng)用計(jì)劃
- 幼兒園國(guó)際理解教育培訓(xùn)計(jì)劃
- 粉末冶金調(diào)機(jī)員培訓(xùn)
- 阿拉善盟社區(qū)工作者招聘真題2024
- 北京2025年北京市農(nóng)林科學(xué)院招聘43人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年廣州市勞動(dòng)合同范本下載
- 2025年北大荒黑龍江建三江水利投資有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 靈活運(yùn)用知識(shí)的2024年ESG考試試題及答案
- 國(guó)家藥品監(jiān)督管理局直屬單位招聘考試真題2024
- 2025年梅河口康美職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)必考題
- 浙江省麗水市2024-2025學(xué)年高二上學(xué)期期末教學(xué)質(zhì)量監(jiān)控英語(yǔ)試題【含答案】
- 遼寧省七校協(xié)作體2024-2025學(xué)年高二下學(xué)期3月聯(lián)考地理試題(原卷版+解析版)
- 基于三新背景下的2025年高考生物二輪備考策略講座
評(píng)論
0/150
提交評(píng)論