版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年滬教新版高一數(shù)學上冊階段測試試卷707考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共8題,共16分)1、若是第三象限的角,且則()A.B.C.D.2、【題文】已知是定義在R上的奇函數(shù),若對于x≥0,都有f(x+2)=且當時,則=A.1-eB.e-1.C.-l-eD.e+l3、【題文】在直角坐標平面上的點集那么的面積是A.B.C.D.4、【題文】函數(shù)的零點是()A.B.C.3D.5、【題文】已知是定義在R上的奇函數(shù)且周期為2,若當時,則的值是()A.B.C.D.6、已知三棱柱的側棱與底面垂直,體積為底面是邊長為的正三角形.若為底面的中心,則與平面所成角的大小為()A.B.C.D.7、函數(shù)y=的定義域是()A.B.C.(+∞)D.(+∞)8、若x∈(-∞,-1]時,不等式(m2-m)?4x-2x<0恒成立,則實數(shù)m的取值范圍是()A.(-2,1)B.(-4,3)C.(-1,2)D.(-3,4)評卷人得分二、填空題(共5題,共10分)9、曲線與直線在y軸右側的交點按橫坐標從小到大依次記為P1,P2,P3,,則.(表示與兩點間的距離).10、若向量且向量=(2,m),=(3,1),則m=____.11、【題文】已知若非是非的充分而不必要條件,則實數(shù)的取值范圍為_____________.12、【題文】27+lg4+2lg5=__________13、已知函數(shù)f(x)=|x-2|,g(x)=kx-1,若方程f(x)=g(x)有兩個不相等的實根,則實數(shù)k的取值范圍是______.評卷人得分三、證明題(共6題,共12分)14、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設計一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.15、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.16、如圖,已知:D、E分別為△ABC的AB、AC邊上的點,DE∥BC,BE與CD交于點O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.17、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.18、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.19、如圖,設△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.評卷人得分四、解答題(共1題,共8分)20、已知集合A={x|x-1<0},B={x|x2-4≥0};求A∩B和A∪B.
評卷人得分五、計算題(共1題,共4分)21、先化簡,再求值:,其中.評卷人得分六、綜合題(共2題,共6分)22、拋物線y=ax2+bx+c(a≠0)過點A(1;-3),B(3,-3),C(-1,5),頂點為M點.
(1)求該拋物線的解析式.
(2)試判斷拋物線上是否存在一點P;使∠POM=90°.若不存在,說明理由;若存在,求出P點的坐標.
(3)試判斷拋物線上是否存在一點K,使∠OMK=90°,若不存在,說明理由;若存在,求出K點的坐標.23、如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰好經(jīng)過x軸上A;B兩點.
(1)求A;B,C三點的坐標;
(2)求經(jīng)過A,B,C三點的拋物線的解析式.參考答案一、選擇題(共8題,共16分)1、C【分析】【解析】
因為是第三象限的角,且,則選C【解析】【答案】C2、B【分析】【解析】
試題分析:根據(jù)題意,由于是定義在R上的奇函數(shù),若對于x≥0,都有f(x+2)=那么可知當時,故可知=e-1,故選B.
考點:函數(shù)解析式。
點評:主要是考查了函數(shù)就行以及解析式的運用,屬于基礎題?!窘馕觥俊敬鸢浮緽3、C【分析】【解析】
試題分析:表示圓的內部,集合M中整理為或其中當時表示直線x軸負半軸,圓圍成的圖形與直線y軸正半軸,圓圍成的圖形,兩圖形均為扇形,面積和為圓的當時表示的圖形是圓在第四象限的部分,綜上可知總面積為圓面積的一半,即
考點:不等式表示平面區(qū)域。
點評:集合N相對比較簡單,集合M中的不等式化簡后包括多種情況,如就又包含了兩種情況,分情況討論題目對學生一直是難點【解析】【答案】C4、A【分析】【解析】令解得所以函數(shù)的零點為故選A。函數(shù)零點是指函數(shù)與x軸交點的橫坐標值,所以B不符合。【解析】【答案】A5、C【分析】【解析】略【解析】【答案】C6、B【分析】【解答】如圖所示,∵底面∴為與平面所成角,∵平面∥平面∴為與平面所成角,∵∴解得又為底面正三角形的中心,∴在中,∴故選B.
7、A【分析】【解答】解:由題意知;2x﹣1>0①
2x﹣1≠1②
3x﹣2>0③
綜合上面三個不等式得到x>且x≠1且x>
∴函數(shù)的定義域是
故選A.
【分析】觀察對數(shù)的代數(shù)式,首先底數(shù)要大于零且不等于1,真數(shù)要大于零,而真數(shù)是一個開偶次方形式,被開方數(shù)需要大于零,得到三個不等式,組成不等式組,求這幾個不等式的解集的交集,得到結果.8、C【分析】解:∵(m2-m)4x-2x<0在x∈(-∞;-1]時恒成立。
∴(m2-m)<在x∈(-∞;-1]時恒成立。
由于f(x)=在x∈(-∞;-1]時單調遞減。
∵x≤-1;
∴f(x)≥2
∴m2-m<2
∴-1<m<2
故選C
由題意可得(m2-m)<在x∈(-∞,-1]時恒成立,則只要(m2-m)<的最小值;然后解不等式可m的范圍。
本題主要考查了函數(shù)的恒成立問題m≤f(x)恒成立?m≤f(x)得最小值(m≥f(x)恒成立?m≥f(x)的最大值),體現(xiàn)出函數(shù)恒成立與最值的相互轉化.【解析】【答案】C二、填空題(共5題,共10分)9、略
【分析】根據(jù)題意令解得,考點:二倍角的三角函數(shù)及三角恒等變換,周期性【解析】【答案】10、略
【分析】【解析】試題分析:因為,向量且向量=(2,m),=(3,1),所以,m=-6.考點:平面向量的坐標運算,向量垂直的條件?!窘馕觥俊敬鸢浮?611、略
【分析】【解析】
試題分析:由題意知非或非或又非是非的充分而不必要條件,且
考點:充分條件和必要條件【解析】【答案】12、略
【分析】【解析】【解析】【答案】1113、略
【分析】解:由題意可得函數(shù)f(x)的圖象(藍線)
和函數(shù)g(x)的圖象(紅線)有兩個交點;
如圖所示:
KAB=
數(shù)形結合可得:<k<1;
故答案為:<k<1.
畫出函數(shù)f(x);g(x)的圖象;由題意可得函數(shù)f(x)的圖象(藍線)和函數(shù)g(x)的圖象(紅線)有兩個交點,數(shù)形結合求得k的范圍.
本題主要考查函數(shù)的零點與方程的根的關系,體現(xiàn)了轉化、數(shù)形結合的數(shù)學思想,屬于基礎題.【解析】<k<1三、證明題(共6題,共12分)14、略
【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.15、略
【分析】【分析】(1)關鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.16、略
【分析】【分析】延長AM,過點B作CD的平行線與AM的延長線交于點F,再連接CF.根據(jù)平行線分線段成比例的性質和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質即可得證.【解析】【解答】證明:延長AM;過點B作CD的平行線與AM的延長線交于點F,再連接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
從而四邊形OBFC為平行四邊形;
所以BM=MC.17、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.18、略
【分析】【分析】首先作CD關于AB的對稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關于AB的對稱直線FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四點共圓.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.19、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點;
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.四、解答題(共1題,共8分)20、略
【分析】
A=(-∞;1),B=(-∞,-2]∪[2,+∞);
∴A∩B=(-∞;-2];
A∪B=(-∞;1)∪[2,+∞).
【解析】【答案】先求出集合A與B;再利用數(shù)軸進行交集;并集運算即可.
五、計算題(共1題,共4分)21、略
【分析】【分析】先把括號內通分得原式=?,再把各分式的分子和分母因式分解約分得原式=2(x+2),然后把x=-2代入計算即可.【解析】【解答】解:原式=?
=?
=?
=2(x+2)
=2x+4;
當x=-2;
原式=2(-2)+4=2.六、綜合題(共2題,共6分)22、略
【分析】【分析】(1)將A(1,-3),B(3,-3),C(-1,5)三點坐標代入y=ax2+bx+c中,列方程組求a、b;c的值;得出拋物線解析式;
(2)拋物線上存在一點P,使∠POM=90?.設(a,a2-4a);過P點作PE⊥y軸,垂足為E;過M點作MF⊥y軸,垂足為F,利用互余關系證明Rt△OEP∽Rt△MFO,利用相似比求a即可;
(3)拋物線上必存在一點K,使∠OMK=90?.過頂點M作MN⊥OM,交y軸于點N,在Rt△OMN中,利用互余關系證明△OFM∽△MFN,利用相似比求N點坐標,再求直線MN解析式,將直線MN解析式與拋物線解析式聯(lián)立,可求K點坐標.【解析】【解答】解:(1)根據(jù)題意,得,解得;
∴拋物線的解析式為y=x2-4x;
(2)拋物線上存在一點P;使∠POM=90?.
x=-=-=2,y===-4;
∴頂點M的坐標為(2;-4);
設拋物線上存在一點P,滿足OP⊥OM,其坐標為(a,a2-4a);
過P點作PE⊥y軸;垂足為E;過M點作MF⊥y軸,垂足為F.
則∠POE+∠MOF=90?;∠POE+∠EPO=90?.
∴∠EPO=∠FOM.
∵∠OEP=∠MFO=90?;
∴Rt△OEP∽Rt△MFO.
∴OE:MF=EP:OF.
即(a2-4a):2=a:4;
解得a1=0(舍去),a2=;
∴P點的坐標為(,);
(3)過頂點M作MN⊥OM;交y軸于點N.則∠FMN+∠OMF=90?.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同法學教學大綱
- 2025有限公司員工試用期合同
- 2025商業(yè)地產(chǎn)銷售代理合同
- 二零二五年度地質災害應急土方運輸服務合同3篇
- 2025年度養(yǎng)殖場養(yǎng)殖廢棄物資源化利用合同3篇
- 2025年度科技創(chuàng)新園區(qū)拆遷房產(chǎn)分割與產(chǎn)業(yè)扶持協(xié)議3篇
- 2025年度林業(yè)產(chǎn)業(yè)發(fā)展競業(yè)禁止模板木方交易協(xié)議3篇
- 二零二五年度農村集體建設用地個人地基買賣合同2篇
- 二零二五年度高速公路建設項目承包協(xié)議3篇
- 2025年度水上旅游安全事故處理與救援服務協(xié)議3篇
- 2022年八九年級物理課本實驗歸納
- 膠原蛋白行業(yè)報告
- 養(yǎng)老機構安全隱患排查清單、自查表、治理整改臺賬
- 少數(shù)民族小學生良好行為習慣養(yǎng)成的內需與外趨的研究課題
- 毛坯房驗房專用表格詳細
- 幼兒園大班主題《我自己》個別化學習
- 派出所立體化勤務指揮室建設模式探析――以大連市公
- 物資設備部工作述職報告
- 精品資料(2021-2022年收藏)龍門吊軌道基礎施工方案
- 畫廊與畫家合作協(xié)議書范本
- 全口義齒-印模與模型-課件PPT
評論
0/150
提交評論