保定幼兒師范高等專科學(xué)?!吨悄芟到y(tǒng)設(shè)計(jì)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
保定幼兒師范高等??茖W(xué)?!吨悄芟到y(tǒng)設(shè)計(jì)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
保定幼兒師范高等??茖W(xué)校《智能系統(tǒng)設(shè)計(jì)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
保定幼兒師范高等??茖W(xué)校《智能系統(tǒng)設(shè)計(jì)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
保定幼兒師范高等??茖W(xué)校《智能系統(tǒng)設(shè)計(jì)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁保定幼兒師范高等??茖W(xué)校《智能系統(tǒng)設(shè)計(jì)實(shí)踐》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的文本摘要生成中,以下哪種方法可能導(dǎo)致生成的摘要與原文主題偏離?()A.過度依賴原文中的高頻詞匯B.未能理解原文的語義結(jié)構(gòu)C.忽略原文中的關(guān)鍵信息D.以上都有可能2、在人工智能的知識表示方法中,語義網(wǎng)絡(luò)和框架表示是常見的方式。假設(shè)我們要構(gòu)建一個(gè)關(guān)于動(dòng)物分類的知識系統(tǒng),以下關(guān)于這兩種表示方法的說法,哪一項(xiàng)是正確的?()A.語義網(wǎng)絡(luò)更適合表示結(jié)構(gòu)化的、層次分明的知識B.框架表示難以處理知識的不確定性和模糊性C.語義網(wǎng)絡(luò)難以表達(dá)復(fù)雜的對象及其關(guān)系D.框架表示在知識的擴(kuò)展和更新方面較為困難3、在人工智能的自動(dòng)駕駛倫理問題中,假設(shè)一輛自動(dòng)駕駛汽車面臨不可避免的碰撞,必須在保護(hù)車內(nèi)乘客和避免撞到行人之間做出選擇。以下關(guān)于這種倫理困境的解決方法,哪一項(xiàng)是最具爭議的?()A.優(yōu)先保護(hù)車內(nèi)乘客的生命安全,因?yàn)樗麄兪擒囕v的使用者B.隨機(jī)做出選擇,將命運(yùn)交給概率C.設(shè)計(jì)算法,根據(jù)具體情況(如行人的數(shù)量、年齡等)進(jìn)行權(quán)衡D.完全由汽車制造商決定默認(rèn)的選擇策略,用戶無法干預(yù)4、在人工智能的模型評估中,需要選擇合適的指標(biāo)來衡量模型的性能。假設(shè)一個(gè)圖像分類模型,以下關(guān)于模型評估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一重要的評估指標(biāo),其他指標(biāo)如召回率和F1值都不重要B.對于不平衡的數(shù)據(jù)集,準(zhǔn)確率可能會產(chǎn)生誤導(dǎo),應(yīng)該使用更合適的指標(biāo)如召回率和F1值C.模型評估指標(biāo)只與模型的架構(gòu)有關(guān),與數(shù)據(jù)分布無關(guān)D.選擇評估指標(biāo)時(shí)不需要考慮具體的應(yīng)用場景和需求5、在人工智能的推薦系統(tǒng)中,為用戶提供個(gè)性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個(gè)電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項(xiàng)是不準(zhǔn)確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機(jī)推薦D.混合推薦6、在人工智能的研究中,模型的評估指標(biāo)對于衡量模型性能非常重要。假設(shè)要評估一個(gè)圖像分類模型的性能。以下關(guān)于評估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是常用的評估指標(biāo)之一,表示正確分類的樣本比例B.召回率衡量了模型能夠正確識別正例的能力C.F1分?jǐn)?shù)綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評估指標(biāo)D.只要模型的準(zhǔn)確率高,就說明模型在實(shí)際應(yīng)用中一定表現(xiàn)良好7、在自然語言處理領(lǐng)域,情感分析是一項(xiàng)重要的任務(wù)。假設(shè)要分析大量的在線商品評論,以確定消費(fèi)者對產(chǎn)品的態(tài)度是積極、消極還是中性。在進(jìn)行情感分析時(shí),以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過查找預(yù)定義的情感詞來判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動(dòng)學(xué)習(xí)語言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動(dòng)化的技術(shù)D.結(jié)合詞向量和機(jī)器學(xué)習(xí)分類算法,如支持向量機(jī)(SVM)8、在人工智能的模型訓(xùn)練中,過擬合是一個(gè)常見的問題。假設(shè)正在訓(xùn)練一個(gè)用于手寫數(shù)字識別的神經(jīng)網(wǎng)絡(luò),以下關(guān)于防止過擬合的方法,哪一項(xiàng)是最有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少神經(jīng)網(wǎng)絡(luò)的層數(shù)C.使用更復(fù)雜的激活函數(shù)D.不進(jìn)行任何處理,認(rèn)為過擬合不會影響模型性能9、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)是一種創(chuàng)新的模型架構(gòu)。以下關(guān)于GAN的說法,不正確的是()A.GAN由生成器和判別器組成,通過兩者之間的對抗訓(xùn)練來生成逼真的數(shù)據(jù)B.GAN在圖像生成、文本生成和數(shù)據(jù)增強(qiáng)等領(lǐng)域取得了顯著的成果C.GAN的訓(xùn)練過程穩(wěn)定,容易收斂到最優(yōu)解D.GAN的應(yīng)用存在一些潛在的問題,如模式崩潰和訓(xùn)練不穩(wěn)定等10、人工智能中的專家系統(tǒng)是一種基于知識的系統(tǒng)。假設(shè)有一個(gè)用于故障診斷的專家系統(tǒng),需要將專家的知識和經(jīng)驗(yàn)轉(zhuǎn)化為系統(tǒng)的規(guī)則和推理機(jī)制。以下關(guān)于專家系統(tǒng)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.專家系統(tǒng)的性能取決于知識的準(zhǔn)確性和完整性B.專家系統(tǒng)能夠處理不確定性和模糊性的知識C.專家系統(tǒng)的開發(fā)需要大量的時(shí)間和專業(yè)知識D.專家系統(tǒng)一旦開發(fā)完成,就不需要進(jìn)行更新和維護(hù)11、在人工智能的機(jī)器翻譯任務(wù)中,需要將一種語言翻譯成另一種語言。假設(shè)要翻譯的文本涉及專業(yè)領(lǐng)域的術(shù)語和特定的文化背景知識。以下哪種方法能夠提高翻譯的準(zhǔn)確性和專業(yè)性?()A.使用通用的機(jī)器翻譯模型,不進(jìn)行任何定制B.結(jié)合領(lǐng)域詞典和知識圖譜進(jìn)行翻譯C.依靠人工翻譯,不使用機(jī)器翻譯D.隨機(jī)選擇翻譯結(jié)果,不考慮準(zhǔn)確性12、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點(diǎn)進(jìn)行決策。假設(shè)要對大量的文本數(shù)據(jù)進(jìn)行分類,以下關(guān)于算法選擇的描述,哪一項(xiàng)是不正確的?()A.決策樹算法簡單直觀,適用于處理具有明顯特征差異的文本數(shù)據(jù)B.支持向量機(jī)在小樣本數(shù)據(jù)上表現(xiàn)較好,可用于高精度的文本分類C.隨機(jī)森林算法通過集成多個(gè)決策樹,能夠提高分類的穩(wěn)定性和準(zhǔn)確性D.選擇算法時(shí)只考慮算法的準(zhǔn)確性,而無需考慮計(jì)算資源和訓(xùn)練時(shí)間的需求13、可解釋性是人工智能模型面臨的一個(gè)重要問題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過程和結(jié)果,增強(qiáng)信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級的差異14、在深度學(xué)習(xí)中,BatchNormalization的作用是()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是15、當(dāng)利用人工智能技術(shù)進(jìn)行股票市場的預(yù)測時(shí),需要綜合考慮多種因素,如公司財(cái)務(wù)數(shù)據(jù)、宏觀經(jīng)濟(jì)指標(biāo)、市場情緒等。在這種復(fù)雜的場景下,以下哪種人工智能方法可能具有較大的潛力?()A.基于規(guī)則的專家系統(tǒng)B.強(qiáng)化學(xué)習(xí)C.遺傳算法D.模糊邏輯16、在人工智能的發(fā)展過程中,算力的提升起到了重要的推動(dòng)作用。假設(shè)一個(gè)研究團(tuán)隊(duì)需要進(jìn)行大規(guī)模的人工智能模型訓(xùn)練。以下關(guān)于算力對人工智能的影響的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的算力能夠加速模型的訓(xùn)練過程,縮短研發(fā)周期B.更高的算力可以支持更復(fù)雜的模型結(jié)構(gòu)和更多的數(shù)據(jù)處理C.只要有足夠的算力,就可以忽略模型的優(yōu)化和算法的改進(jìn)D.算力的成本和可獲取性會影響人工智能技術(shù)的應(yīng)用和推廣17、在人工智能的發(fā)展歷程中,機(jī)器學(xué)習(xí)算法起到了關(guān)鍵作用。假設(shè)我們要開發(fā)一個(gè)能夠預(yù)測股票價(jià)格走勢的模型,需要處理大量的歷史交易數(shù)據(jù)和財(cái)務(wù)報(bào)表等信息。以下關(guān)于選擇機(jī)器學(xué)習(xí)算法的考慮,哪一項(xiàng)是最為重要的?()A.選擇簡單直觀的線性回歸算法,因?yàn)槠湟子诶斫夂徒忉孊.采用復(fù)雜的深度學(xué)習(xí)算法,如卷積神經(jīng)網(wǎng)絡(luò),以捕捉數(shù)據(jù)中的復(fù)雜模式C.運(yùn)用決策樹算法,其能夠生成易于理解的規(guī)則D.隨機(jī)選擇一種算法,碰碰運(yùn)氣18、人工智能中的模型壓縮技術(shù)對于在資源受限的設(shè)備上部署模型至關(guān)重要。假設(shè)要將一個(gè)大型的深度學(xué)習(xí)模型部署到移動(dòng)設(shè)備上,同時(shí)保持一定的性能。以下哪種模型壓縮方法在減少模型參數(shù)數(shù)量和計(jì)算量方面最為有效?()A.剪枝B.量化C.知識蒸餾D.以上方法綜合運(yùn)用19、假設(shè)在一個(gè)智能教育系統(tǒng)中,需要利用人工智能為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑和資源推薦。為了準(zhǔn)確評估學(xué)生的學(xué)習(xí)狀態(tài)和需求,以下哪種數(shù)據(jù)和方法可能是重要的?()A.學(xué)習(xí)行為數(shù)據(jù)和聚類分析B.知識掌握程度數(shù)據(jù)和回歸分析C.學(xué)習(xí)偏好數(shù)據(jù)和分類算法D.以上都是20、深度學(xué)習(xí)在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)我們正在訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)來識別不同種類的動(dòng)物。如果訓(xùn)練數(shù)據(jù)中某些動(dòng)物類別的樣本數(shù)量過少,可能會導(dǎo)致什么問題?()A.模型過擬合B.模型欠擬合C.訓(xùn)練速度加快D.模型的準(zhǔn)確率提高21、自然語言處理是人工智能的重要研究方向之一。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)回答用戶問題的智能客服系統(tǒng),以下關(guān)于自然語言處理在該系統(tǒng)中的應(yīng)用描述,哪一項(xiàng)是不準(zhǔn)確的?()A.詞法分析、句法分析和語義理解等技術(shù)有助于理解用戶輸入的問題B.機(jī)器翻譯技術(shù)可以將用戶的問題翻譯成其他語言,以便更好地處理C.利用大規(guī)模的語料庫和預(yù)訓(xùn)練模型,可以提高回答的準(zhǔn)確性和合理性D.自然語言處理技術(shù)能夠完美理解人類語言的所有含義和語境,不會出現(xiàn)誤解22、強(qiáng)化學(xué)習(xí)在機(jī)器人控制中發(fā)揮著重要作用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于強(qiáng)化學(xué)習(xí)在該場景中的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的行為策略B.設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)對于機(jī)器人的學(xué)習(xí)效果至關(guān)重要C.強(qiáng)化學(xué)習(xí)可以使機(jī)器人快速適應(yīng)新的環(huán)境和任務(wù),無需重新訓(xùn)練D.機(jī)器人在學(xué)習(xí)過程中可能會經(jīng)歷多次失敗,但通過不斷嘗試最終能夠?qū)W會行走23、在人工智能的語音合成領(lǐng)域,假設(shè)要生成自然流暢、富有情感的語音,以下關(guān)于語音合成技術(shù)的描述,正確的是:()A.參數(shù)合成方法能夠靈活控制語音的特征,但音質(zhì)相對較差B.拼接合成方法生成的語音自然度高,但需要大量的語音庫支持C.深度學(xué)習(xí)的語音合成模型可以同時(shí)實(shí)現(xiàn)高質(zhì)量和高自然度的語音生成D.語音合成的情感表達(dá)只能通過調(diào)整語音的音調(diào)來實(shí)現(xiàn)24、在一個(gè)利用人工智能進(jìn)行智能安防的系統(tǒng)中,例如識別監(jiān)控視頻中的異常行為或可疑人員,以下哪種技術(shù)可能對于實(shí)時(shí)處理和準(zhǔn)確識別起到重要作用?()A.快速目標(biāo)檢測算法B.高效的特征提取方法C.分布式計(jì)算框架D.以上都是25、人工智能在金融風(fēng)險(xiǎn)管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預(yù)測市場風(fēng)險(xiǎn),以下關(guān)于模型評估指標(biāo)的選擇,哪一項(xiàng)是最重要的?()A.準(zhǔn)確率,即模型正確預(yù)測的比例B.召回率,即模型正確識別出風(fēng)險(xiǎn)的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量模型預(yù)測值與實(shí)際值之間的差異26、在人工智能的機(jī)器學(xué)習(xí)算法中,決策樹是一種常見的算法。假設(shè)我們要根據(jù)一些用戶的特征來預(yù)測他們是否會購買某款產(chǎn)品,使用決策樹進(jìn)行建模。那么,關(guān)于決策樹的特點(diǎn),以下哪一項(xiàng)是不正確的?()A.易于理解和解釋,生成的決策規(guī)則清晰明了B.對數(shù)據(jù)的噪聲和缺失值比較敏感C.能夠處理非線性關(guān)系的數(shù)據(jù)D.決策樹的構(gòu)建不需要進(jìn)行特征選擇27、在人工智能的目標(biāo)檢測任務(wù)中,假設(shè)圖像中存在多個(gè)不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測算法能夠較好地應(yīng)對這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測D.以上都是28、當(dāng)利用人工智能進(jìn)行智能醫(yī)療影像診斷,例如檢測腫瘤或病變,以下哪種挑戰(zhàn)和問題可能是需要重點(diǎn)解決的?()A.數(shù)據(jù)標(biāo)注的準(zhǔn)確性和一致性B.模型的泛化能力和魯棒性C.結(jié)果的解釋和臨床可接受性D.以上都是29、在自然語言處理中,詞向量表示是基礎(chǔ)技術(shù)之一。假設(shè)要對大量文本進(jìn)行處理和分析。以下關(guān)于詞向量的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.詞向量可以將單詞轉(zhuǎn)換為數(shù)值向量,便于計(jì)算機(jī)處理和計(jì)算B.常見的詞向量模型有One-Hot編碼、Word2Vec和GloVe等C.詞向量的維度越高,表達(dá)能力越強(qiáng),但計(jì)算和存儲成本也越高D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進(jìn)行更新和優(yōu)化30、在人工智能的聚類分析中,例如將客戶按照消費(fèi)行為進(jìn)行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類算法,基于距離進(jìn)行分組B.層次聚類算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類算法,基于密度進(jìn)行分組D.隨機(jī)聚類算法,隨機(jī)分配數(shù)據(jù)到不同組二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于圖神經(jīng)網(wǎng)絡(luò)(GNN)的模型,對社交網(wǎng)絡(luò)中的關(guān)系進(jìn)行預(yù)測。研究不同的圖結(jié)構(gòu)和節(jié)點(diǎn)特征對預(yù)測結(jié)果的影響。2、(本題5分)使用Python中的PyTorch框架,構(gòu)建一個(gè)基于Transformer架構(gòu)的問答系統(tǒng)模型,回答各種問題。3、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個(gè)生成對抗網(wǎng)絡(luò)(GAN),用于生成具有特定風(fēng)格的舞蹈動(dòng)作序列。通過引入人體姿態(tài)估計(jì)和動(dòng)作捕捉數(shù)據(jù),提高生成動(dòng)作的真實(shí)性和流暢性。4、(本題5分)使用Python的Scikit-learn庫,實(shí)現(xiàn)One-ClassSVM算法對異常檢測任務(wù),通過調(diào)整核函數(shù)和參數(shù)優(yōu)化檢測效果。5、(本題5分)利用Python的PyTorch庫,構(gòu)建一個(gè)基于注意力機(jī)制的Transformer模型,對長篇小說進(jìn)行章節(jié)內(nèi)容的自動(dòng)摘要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論