2025屆廣西南寧市“4N”高中聯(lián)合體高三一診考試數(shù)學試卷含解析_第1頁
2025屆廣西南寧市“4N”高中聯(lián)合體高三一診考試數(shù)學試卷含解析_第2頁
2025屆廣西南寧市“4N”高中聯(lián)合體高三一診考試數(shù)學試卷含解析_第3頁
2025屆廣西南寧市“4N”高中聯(lián)合體高三一診考試數(shù)學試卷含解析_第4頁
2025屆廣西南寧市“4N”高中聯(lián)合體高三一診考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣西南寧市“4N”高中聯(lián)合體高三一診考試數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實數(shù)的取值范圍為()A. B. C. D.2.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件3.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.4.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.5.若、滿足約束條件,則的最大值為()A. B. C. D.6.正項等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.547.記單調遞增的等比數(shù)列的前項和為,若,,則()A. B. C. D.8.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.9.設i是虛數(shù)單位,若復數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.310.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.11.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.712.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.0二、填空題:本題共4小題,每小題5分,共20分。13.已知,則________.(填“>”或“=”或“<”).14.若變量,滿足約束條件則的最大值是______.15.的二項展開式中,含項的系數(shù)為__________.16.定義在上的奇函數(shù)滿足,并且當時,則___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形中,,E,F(xiàn)分別為,的中點.沿將矩形折起,使,如圖所示.設P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.19.(12分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.20.(12分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標準方程;(2)經過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.21.(12分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,,求的值.22.(10分)已知動圓經過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時的值,然后根據(jù)變化時,函數(shù)的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數(shù)圖象與不等式恒成立的關系,考查轉化與化歸思想,首先函數(shù)圖象轉化為不等式恒成立,然后不等式恒成立再轉化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.2、B【解析】

求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.3、C【解析】

畫出幾何體的圖形,然后轉化判斷四個命題的真假即可.【詳解】如圖;連接相關點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應用,涉及空間幾何體的體積,直線與平面的位置關系的應用,平面的基本性質,是中檔題.4、C【解析】

先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.5、C【解析】

作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時對應的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當直線經過點時,該直線在軸上的截距最大,此時取最大值,即.故選:C.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結合思想的應用,屬于基礎題.6、C【解析】

由等差數(shù)列通項公式得,求出,再利用等差數(shù)列前項和公式能求出.【詳解】正項等差數(shù)列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數(shù)列的性質與求和公式,屬于中檔題.解等差數(shù)列問題要注意應用等差數(shù)列的性質()與前項和的關系.7、C【解析】

先利用等比數(shù)列的性質得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進而得到數(shù)列的通項和前項和,根據(jù)后兩個公式可得正確的選項.【詳解】因為為等比數(shù)列,所以,故即,由可得或,因為為遞增數(shù)列,故符合.此時,所以或(舍,因為為遞增數(shù)列).故,.故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.8、A【解析】

由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學生的計算求解能力與推理能力,屬于基礎題.9、A【解析】

根據(jù)復數(shù)除法運算化簡,結合純虛數(shù)定義即可求得m的值.【詳解】由復數(shù)的除法運算化簡可得,因為是純虛數(shù),所以,∴,故選:A.【點睛】本題考查了復數(shù)的概念和除法運算,屬于基礎題.10、B【解析】

根據(jù)程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.11、D【解析】

利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數(shù)量積運算,關鍵是利用基向量表示所求向量.12、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結論之間的關系去尋找函數(shù)的解析式要滿足的關系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數(shù)式比較大小,涉及到換底公式的應用,考查學生的數(shù)學運算能力,是一道中檔題.14、9【解析】

做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數(shù)過點時取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結合求線性目標函數(shù)的最值,屬于基礎題.15、【解析】

寫出二項展開式的通項,然后取的指數(shù)為求得的值,則項的系數(shù)可求得.【詳解】,由,可得.含項的系數(shù)為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.16、【解析】

根據(jù)所給表達式,結合奇函數(shù)性質,即可確定函數(shù)對稱軸及周期性,進而由的解析式求得的值.【詳解】滿足,由函數(shù)對稱性可知關于對稱,且令,代入可得,由奇函數(shù)性質可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當時,所以,所以,故答案為:.【點睛】本題考查了函數(shù)奇偶性與對稱性的綜合應用,周期函數(shù)的判斷及應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標系,求得半平面的法向量:,然后利用空間向量的相關結論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標系,則各點坐標為,,,所以,,設平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.18、(1)證明見解析;(2).【解析】

(1)把轉化成,令,由題意得,即證明恒成立,通過導數(shù)求證即可(2)直接求導可得,,令,得或,故根據(jù)0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數(shù)在區(qū)間上單調遞減.又,故此時函數(shù)僅有一個零點為0;②當時,令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數(shù)還有一個零點,不符合題意;③當時,令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數(shù)還有一個零點,不符合題意.綜上,所求實數(shù)的值為.【點睛】本題考查不等式的恒成立問題和函數(shù)的零點問題,本題的難點在于把導數(shù)化成因式分解的形式,如,進而分類討論,本題屬于難題19、(1);(2)【解析】

(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計算b,可得結果.(2)計算,然后根據(jù)余弦定理,可得,利用平方關系,可得結果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應用,屬基礎題.20、(1);(2)見解析【解析】

(1)根據(jù)已知可得,結合離心率和關系,即可求出橢圓的標準方程;(2)斜率不為零,設的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標關系,求出方程,令求出坐標,要證、、三點共線,只需證,將分子用縱坐標表示,即可證明結論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設的方程為,聯(lián)立方程,消去得,由題意,得恒成立,設,,所以,直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子,.所以,,三點共線.解法二:當直線的斜率不存在時,由題意,得的方程為,代入橢圓的方程,得,,直線的方程為.則,,,所以,即,,三點共線.當直線的斜率存在時,設的方程為,,,聯(lián)立方程消去,得.由題意,得恒成立,故,.直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子所以.所以,,三點共線.【點睛】本題考查橢圓的標準方程、直線與橢圓的位置關系,要熟練掌握根與系數(shù)關

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論