版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆四川省南充市南充高級(jí)中學(xué)高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列中,,,則數(shù)列前6項(xiàng)和為()A.18 B.24 C.36 D.722.M、N是曲線y=πsinx與曲線y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π3.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.4.已知函數(shù)在上可導(dǎo)且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、5.已知拋物線:()的焦點(diǎn)為,為該拋物線上一點(diǎn),以為圓心的圓與的準(zhǔn)線相切于點(diǎn),,則拋物線方程為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.637.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則8.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,且,若,則()A.0 B.1 C.673 D.6749.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-310.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.11.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.12.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個(gè)數(shù)為()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側(cè)棱長為,為中點(diǎn),則三棱錐的體積為________.14.已知雙曲線的左焦點(diǎn)為,、為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),的中點(diǎn)為,的中點(diǎn)為,的中點(diǎn)為,若,且直線的斜率為,則__________,雙曲線的離心率為__________.15.某校為了解家長對(duì)學(xué)校食堂的滿意情況,分別從高一、高二年級(jí)隨機(jī)抽取了20位家長的滿意度評(píng)分,其頻數(shù)分布表如下:滿意度評(píng)分分組合計(jì)高一1366420高二2655220根據(jù)評(píng)分,將家長的滿意度從低到高分為三個(gè)等級(jí):滿意度評(píng)分評(píng)分70分70評(píng)分90評(píng)分90分滿意度等級(jí)不滿意滿意非常滿意假設(shè)兩個(gè)年級(jí)家長的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級(jí)各隨機(jī)抽取1名家長,記事件:“高一家長的滿意度等級(jí)高于高二家長的滿意度等級(jí)”,則事件發(fā)生的概率為__________.16.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.18.(12分)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的實(shí)數(shù)m,都有,并證明你的結(jié)論.19.(12分)已知函數(shù).(1)當(dāng)時(shí).①求函數(shù)在處的切線方程;②定義其中,求;(2)當(dāng)時(shí),設(shè),(為自然對(duì)數(shù)的底數(shù)),若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.20.(12分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.21.(12分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時(shí),f(x)的最小值為0,求a+5b的最大值.注:22.(10分)第十四屆全國冬季運(yùn)動(dòng)會(huì)召開期間,某校舉行了“冰上運(yùn)動(dòng)知識(shí)競賽”,為了解本次競賽成績情況,從中隨機(jī)抽取部分學(xué)生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機(jī)抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識(shí)”志愿活動(dòng),并指定2名負(fù)責(zé)人,求從第4組抽取的學(xué)生中至少有一名是負(fù)責(zé)人的概率.組號(hào)分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計(jì)1.00
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項(xiàng)和公式可得結(jié)果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.3、D【解析】
利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D【點(diǎn)睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.4、A【解析】
設(shè),利用導(dǎo)數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進(jìn)而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計(jì)算能力,屬于中檔試題.5、C【解析】
根據(jù)拋物線方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點(diǎn),根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6、B【解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運(yùn)算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.7、C【解析】
根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),也可以滿足∥,b∥,故本命題不正確;B:當(dāng)時(shí),也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當(dāng)∥,,時(shí),能得到,故本命題是正確的;D:當(dāng)時(shí),也可以滿足,b∥,故本命題不正確.故選:C【點(diǎn)睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.8、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)?,故,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.9、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點(diǎn)睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.10、B【解析】
由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.11、B【解析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.12、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項(xiàng).【點(diǎn)睛】考查集合并集運(yùn)算,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
試題分析:因?yàn)檎庵牡酌孢呴L為,側(cè)棱長為為中點(diǎn),所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點(diǎn):幾何體的體積的計(jì)算.14、【解析】
設(shè),,根據(jù)中點(diǎn)坐標(biāo)公式可得坐標(biāo),利用可得到點(diǎn)坐標(biāo)所滿足的方程,結(jié)合直線斜率可求得,進(jìn)而求得;將點(diǎn)坐標(biāo)代入雙曲線方程,結(jié)合焦點(diǎn)坐標(biāo)可求得,進(jìn)而得到離心率.【詳解】左焦點(diǎn)為,雙曲線的半焦距.設(shè),,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結(jié)合可解得:,,離心率.故答案為:;.【點(diǎn)睛】本題考查直線與雙曲線的綜合應(yīng)用問題,涉及到直線截雙曲線所得線段長度的求解、雙曲線離心率的求解問題;關(guān)鍵是能夠通過設(shè)點(diǎn)的方式,結(jié)合直線斜率、垂直關(guān)系、點(diǎn)在雙曲線上來構(gòu)造方程組求得所需變量的值.15、0.42【解析】
高一家長的滿意度等級(jí)高于高二家長的滿意度等級(jí)有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級(jí)為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級(jí)為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級(jí)高于高二家長的滿意度等級(jí)有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點(diǎn)睛】本題考查獨(dú)立事件的概率,涉及到概率的加法公式,是一道中檔題.16、-8【解析】
通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時(shí),在軸截距最大本題正確結(jié)果:【點(diǎn)睛】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),.(2)【解析】
(1)由余弦定理的,然后根據(jù)直線與圓相切的性質(zhì)求出,從而求出;(2)求得的表達(dá)式,通過求導(dǎo)研究函數(shù)的單調(diào)性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因?yàn)榕c半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設(shè)四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【點(diǎn)睛】本題考查余弦定理、直線與圓的位置關(guān)系、導(dǎo)數(shù)與函數(shù)最值的關(guān)系,考查考生的邏輯思維能力,運(yùn)算求解能力,以及函數(shù)與方程的思想.18、(1);(2)存在,Q為線段中點(diǎn)【解析】
解法一:(1)作出平面與平面的交線,可證平面,計(jì)算,,得出,從而得出的大小;(2)證明平面,故而可得當(dāng)Q為線段的中點(diǎn)時(shí).解法二,以為原點(diǎn),以為建立空間直角坐標(biāo)系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設(shè)上存在一定點(diǎn)Q,設(shè)此點(diǎn)的橫坐標(biāo)為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設(shè)與平面的公共點(diǎn)為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點(diǎn),,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當(dāng)Q為線段中點(diǎn)時(shí),對(duì)于任意的實(shí)數(shù),都有.解法二:(1)建立如圖所示的空間直角坐標(biāo)系,則,,所以,,,又由,,則為平面的一個(gè)法向量,設(shè)直線AP與平面所成角為,則,故當(dāng)時(shí),直線AP與平面所成角為.(2)若在上存在一定點(diǎn)Q,設(shè)此點(diǎn)的橫坐標(biāo)為,則,,依題意,對(duì)于任意的實(shí)數(shù)要使,等價(jià)于,即,解得,即當(dāng)Q為線段中點(diǎn)時(shí),對(duì)于任意的實(shí)數(shù),都有.【點(diǎn)睛】本題考查了線面垂直的判定定理、線面角的計(jì)算,考查了空間向量在立體幾何中的應(yīng)用,屬于中檔題.19、(1)①;②8079;(2).【解析】
(1)①時(shí),,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對(duì)任意給定的,,在區(qū)間,上總存在兩個(gè)不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因?yàn)棰?所以②,由①+②得,所以.所以.(2),當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域?yàn)?因?yàn)?,,故,,①此時(shí),當(dāng)變化時(shí)、的變化情況如下:—0+單調(diào)減最小值單調(diào)增∵,,∴對(duì)任意給定的,在區(qū)間上總存在兩個(gè)不同的,使得成立,當(dāng)且僅當(dāng)滿足下列條件,即令,,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減所以,對(duì)任意,有,即②對(duì)任意恒成立.由③式解得:④綜合①④可知,當(dāng)時(shí),對(duì)任意給定的,在上總存在兩個(gè)不同的,使成立.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問題,會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會(huì)根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時(shí)所滿足的條件.不等式恒成立常轉(zhuǎn)化為函數(shù)最值問題解決.20、(1)(2)點(diǎn)在以為直徑的圓上【解析】
(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),,則,,求出直線的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點(diǎn),,則,,直線的斜率為,直線的方程為:,令得,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,,,,又點(diǎn),在橢圓上,,,,點(diǎn)在以為直徑的圓上.【點(diǎn)睛】本題主要考查了橢圓方程,考查了中點(diǎn)坐標(biāo)公式,以及平面向量的基本知識(shí),屬于中檔題.21、(I)詳見解析;(II)2【解析】
(I)求導(dǎo)得到f'(x)=ex-a,討論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《證劵基礎(chǔ)知識(shí)最終》課件
- 《激光切割工藝》課件
- 荒山綠化項(xiàng)目可行性研究報(bào)告
- 《人力資源管理奧秘》課件
- 股份解禁協(xié)議三篇
- 專業(yè)畢業(yè)實(shí)習(xí)報(bào)告4篇
- 2023年-2024年企業(yè)主要負(fù)責(zé)人安全教育培訓(xùn)試題及答案(易錯(cuò)題)
- 2024員工三級(jí)安全培訓(xùn)考試題帶解析答案可打印
- 2023年-2024年項(xiàng)目部安全管理人員安全培訓(xùn)考試題附答案【培優(yōu)A卷】
- 2023年-2024年企業(yè)主要負(fù)責(zé)人安全培訓(xùn)考試題(預(yù)熱題)
- 2024至2030年臺(tái)鈴項(xiàng)目投資價(jià)值分析報(bào)告
- 2024年時(shí)事政治考點(diǎn)大全(173條)
- DB14-T 2730-2023 產(chǎn)后康復(fù)管理師等級(jí)劃分與評(píng)定
- 礦產(chǎn)資源總體規(guī)劃工作計(jì)劃
- 電力建設(shè)施工質(zhì)量驗(yàn)收及評(píng)定規(guī)程-第1部分:土建工程
- 醫(yī)院消防安全知識(shí)試題及答案
- 高中體育足球教案
- 2025屆內(nèi)蒙古赤峰市、呼和浩特市高考考前模擬物理試題含解析
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)附答案
- 中等職業(yè)學(xué)?!稒C(jī)械制造工藝基礎(chǔ)》課程標(biāo)準(zhǔn)
- 臨床醫(yī)學(xué)內(nèi)科學(xué)消化系統(tǒng)疾病教案脂肪性肝病教案
評(píng)論
0/150
提交評(píng)論