2024年新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析報(bào)告:以中國(guó)廣東省為例1736133967_第1頁
2024年新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析報(bào)告:以中國(guó)廣東省為例1736133967_第2頁
2024年新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析報(bào)告:以中國(guó)廣東省為例1736133967_第3頁
2024年新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析報(bào)告:以中國(guó)廣東省為例1736133967_第4頁
2024年新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析報(bào)告:以中國(guó)廣東省為例1736133967_第5頁
已閱讀5頁,還剩90頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

TECHNO-ECONOMICFEASIBILITYANALYSISOFZERO-EMISSIONTRUCKSINURBANANDREGIONALDELIVERYUSECASES:ACASESTUDYOFGUANGDONGPROVINCE,CHINA陳軻薛露露新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析以中國(guó)廣東省為 XVIIExecutive TCO 2022 MY2022—MY2030 圖 運(yùn)輸企業(yè)新能源貨車購置決策變量與影響決策變量的四項(xiàng)措施之間的關(guān) 圖 圖 本文針對(duì)新能源貨車關(guān)鍵零部件質(zhì)量與成本的假設(shè)及數(shù)據(jù)來 圖 2022年4.5噸輕型普通貨車的TCO:深圳市和佛山市城市運(yùn)輸場(chǎng) 圖 2022年31噸氫燃料電池自卸汽車的TCO:深圳市、佛山市和北京市大興區(qū)城市運(yùn)輸場(chǎng) 圖 2022年42噸半掛牽引車的TCO:深圳市與中國(guó)其他城市港口內(nèi)運(yùn)輸場(chǎng) 圖 圖 MY2025和MY2030純電動(dòng)貨車的電池容 圖 MY2025和MY2030純電動(dòng)貨車相較燃油貨車的載質(zhì)量損 圖 MY2025和MY2030氫燃料電池貨車的車載儲(chǔ)氫系統(tǒng)容 圖 MY2025和MY2030氫燃料電池貨車與燃油貨車載質(zhì)量損 圖 MY2022—MY2030不同運(yùn)輸場(chǎng)景新能源貨車的直接制造成 圖 圖 圖 無政策激勵(lì)時(shí),不同運(yùn)輸場(chǎng)景新能源貨車實(shí)現(xiàn)與燃油貨車TCO平價(jià)的年 圖 MY2025和MY2030部分場(chǎng)景下純電動(dòng)貨車與氫燃料電池貨車的TCO構(gòu) 圖 MY2025新能源貨車與燃油貨車TCO差價(jià)與能效比的敏感性分析:以42噸半掛牽引車為 圖 部分運(yùn)輸場(chǎng)景純電動(dòng)貨車與燃油貨車實(shí)現(xiàn)TCO平價(jià)年份與能源價(jià)格敏感性分 圖 部分運(yùn)輸場(chǎng)景氫燃料電池貨車(純氫模式)與燃油貨車實(shí)現(xiàn)TCO平價(jià)年份與能源價(jià)格敏感性分 圖 圖 部分運(yùn)輸場(chǎng)景中技術(shù)進(jìn)步對(duì)MY2022—MY2030新能源貨車TCO下降的貢 圖 圖 表 中國(guó)新能源貨車推廣的國(guó)家政策及地方(深圳市和佛山市)政 表 表 本文中深圳市、佛山市的典型行駛工況說 表 表 本文覆蓋的典型運(yùn)輸場(chǎng)景及說 表 本文中不同運(yùn)輸場(chǎng)景純電動(dòng)貨車與氫燃料電池貨車的能效 表 本文針對(duì)新能源貨車關(guān)鍵零部件質(zhì)量與成本的假設(shè)及數(shù)據(jù)來 表 本文及現(xiàn)有文獻(xiàn)中涉及的新能源貨車TCO成本要 表 本文中燃油貨車、純電動(dòng)貨車與氫燃料電池貨車的維保成本、保險(xiǎn)成本及相關(guān)稅費(fèi)說 表 廣東省燃油貨車、純電動(dòng)貨車和氫燃料電池貨車的高速收 表 2022年新能源貨車的技術(shù)參 表 2022年政策激勵(lì)下新能源貨車與燃油貨車的TCO差 表 為彌合新能源貨車與燃油貨車TCO差價(jià),政府與行業(yè)可考慮采取的措 附表A-1廣東省部分城市新能源貨車優(yōu)先路權(quán)政 附表B-1本研究開展的調(diào)研說

1(ModelYear,以下簡(jiǎn)稱MY)2025(Totalcostofownership,以下簡(jiǎn)稱TCO)(包括提高車輛年運(yùn)營(yíng)里程。MY2030之前與燃油貨車實(shí)現(xiàn)TCO源貨車的購置成本在MY2022―MY2030新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析以中國(guó)廣東省為 排放都發(fā)揮著重要的作用(XueandLiu2022)。與公企業(yè)(TUC2022a),所以,未來新能源貨車的推廣應(yīng)現(xiàn)與同類型燃油貨車的TCO(Toletal.2022)。

為回答這些問題,本研究以中國(guó)新能源貨車推廣先進(jìn)地區(qū)――廣東省深圳市與佛山市——為研究對(duì)象,定量分析了2022—2030年新能源貨車(本文僅考慮純電動(dòng)貨車與氫燃料電池貨車2)在城市運(yùn)輸與區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性。???? 的三個(gè)變量展開(Hunteretal2021Toletal2022):??新能源貨車的技術(shù)與運(yùn)營(yíng)可行性:本文分別分析現(xiàn)狀新能源貨車技術(shù)可行性,以及未來如何通過設(shè)置新能源貨車關(guān)鍵零部件的參數(shù)(如電池包額定容量、電機(jī)峰值功率等),滿足MY2022—MY2030期間不同運(yùn)輸場(chǎng)景差異化的運(yùn)營(yíng)要求。???新能源貨車購置成本:本文基于關(guān)鍵零部件(如電池包、電驅(qū)動(dòng)系統(tǒng)、燃料電池系統(tǒng)和儲(chǔ)氫瓶等)的現(xiàn)狀與未來預(yù)測(cè)成本,“自下而上”地計(jì)算新能源貨車MY202—MY2030的購置成本。其中,新能源貨車關(guān)?新能源貨車與燃油貨車的TCO差異:本文所指的TCO包括車輛的購置成本、運(yùn)營(yíng)成本、維保成本、關(guān)鍵零部件(如電池包)更換成本,以及新能源貨車因載質(zhì)量損失產(chǎn)生的機(jī)會(huì)成本。由于數(shù)據(jù)可得性限制,本文未考慮因補(bǔ)能時(shí)長(zhǎng)產(chǎn)生的額外成本以及車輛殘值?;诓煌瑘?chǎng)景新能源貨車與燃油貨車實(shí)現(xiàn)TCO平價(jià)的年份預(yù)測(cè),本文識(shí)別了近期具備新能源貨車推廣潛力的場(chǎng)景,并分析不同措施——包括政策激勵(lì)、技術(shù)進(jìn)步、、商業(yè)模式推廣與運(yùn)營(yíng)優(yōu)化——對(duì)新能源貨車提前實(shí)現(xiàn)與燃油貨車的TCO平價(jià)所發(fā)揮的作用。此外,本文也通過案例分析,說明本研究的結(jié)論對(duì)于中國(guó)其他區(qū)域的適用性,并討論本文分析方法的局限性、結(jié)果的不確定性與未來調(diào)整方向。MY2027之前實(shí)現(xiàn)與燃油貨車的TCOTCO平價(jià)時(shí)間。??在港口內(nèi)運(yùn)輸、集疏港運(yùn)輸和城市運(yùn)輸場(chǎng)景中,42噸純電動(dòng)半掛牽引車在MY2025之前,有望實(shí)現(xiàn)與燃油貨車的TCO平價(jià),成為近期最具電動(dòng)化潛力的場(chǎng)景。此處,本文假設(shè)深圳市與佛山市的42噸半掛牽引車主要運(yùn)輸輕拋貨,不存在新能源貨車載質(zhì)量損失導(dǎo)致

較高TCO的問題。值得指出的是,在集疏港運(yùn)輸場(chǎng)景中,若純電動(dòng)半掛牽引車與柴油貨車在MY2025之前實(shí)現(xiàn)TCO平價(jià),運(yùn)輸企業(yè)需要協(xié)同純電動(dòng)半掛牽引車的參數(shù)配置、充電基礎(chǔ)設(shè)施規(guī)劃與車輛運(yùn)營(yíng),包括為純電動(dòng)半掛牽引車配置更小容量的電池包、部署相應(yīng)數(shù)量的快充基礎(chǔ)設(shè)施、協(xié)調(diào)純電動(dòng)半掛牽引車的運(yùn)營(yíng)與充電時(shí)間(如在裝卸貨等待時(shí)間、進(jìn)港等待時(shí)間或司機(jī)休息時(shí)間進(jìn)行日間補(bǔ)電)、提高純電動(dòng)半掛牽引車的年運(yùn)營(yíng)里程。??在城市運(yùn)輸場(chǎng)景中,4.5噸純電動(dòng)輕型普通貨車與18噸純電動(dòng)載貨汽車有望在MY2027之前實(shí)現(xiàn)與燃油貨車的TCO平價(jià)。其中,在運(yùn)輸輕拋貨時(shí),這些純電動(dòng)貨車在近期(即MY2022—MY2023)就能實(shí)現(xiàn)與燃油貨車的TCO平價(jià);但在運(yùn)輸重貨時(shí),由于受到新能源貨車載質(zhì)量損失的影響,這些純電動(dòng)貨車的TCO平價(jià)時(shí)間將推遲至MY2025—MY2027。??31噸純電動(dòng)自卸汽車存在突出的載質(zhì)量損失問題,相較同場(chǎng)景的其他車型,更晚才能實(shí)現(xiàn)與燃油貨車的TCO平價(jià)(在MY2029左右)。相較之下,在區(qū)域運(yùn)輸場(chǎng)景中,新能源貨車與燃油貨車實(shí)現(xiàn)TCO平價(jià)的時(shí)間比城市運(yùn)輸、港口內(nèi)運(yùn)輸與集疏港運(yùn)輸場(chǎng)景更晚,在MY2028—MY2030左右。其中,氫燃料電池貨車是具備TCO競(jìng)爭(zhēng)力的新能源貨車技術(shù)——其與燃油貨車實(shí)現(xiàn)TCO平價(jià)的時(shí)間比純電動(dòng)貨車更早。其原因是燃油貨車在高速工況的能量消耗量比城市工況更低;相反,純電動(dòng)貨車在高速工況上的能量消耗量比城市工況更高,因此,純電動(dòng)貨車在區(qū)域運(yùn)輸場(chǎng)景中(以高速工況為主)的能效優(yōu)勢(shì)較小。但值得注意的是,受數(shù)據(jù)限制,本文未區(qū)分氫燃料電池貨車在城市與高速工況的能量消耗量,因此,可能給予氫燃料電池貨車在區(qū)域運(yùn)輸中更大的能效與成本優(yōu)勢(shì)。無政策激勵(lì)時(shí),不同運(yùn)輸場(chǎng)景新能源貨車實(shí)現(xiàn)與燃油貨車TCO平價(jià)的年份如圖ES-1所示。BET

FCET(混合

FCET(純氫)車 貨物類

(千米

203018噸42噸

說明:基于Pers.Comm.(2023a),本文假設(shè)31縮略詞:TCO總擁有成本;BET純電動(dòng)貨車;FCET=氫燃料電動(dòng)貨車;ICEV=燃油汽車;混合插電式混合動(dòng)力模式;純氫純氫模式;UD=城市運(yùn);RD=區(qū)域運(yùn);PO_TRIP=港口內(nèi)運(yùn)(“單能源價(jià)格對(duì)新能源貨車實(shí)現(xiàn)與燃油貨車TCO平價(jià)上述新能源貨車與燃油貨車實(shí)現(xiàn)TCO平價(jià)時(shí)間的結(jié)論,建立在特定的能源價(jià)格前提下,包括2022—2030年,柴油價(jià)格維持在2022年8.1元/升的年均水平,充電價(jià)格(含電價(jià)與充電服務(wù)費(fèi))維持在1.2元/千瓦時(shí)的水平,氫氣價(jià)格則從2022年的的55元/千克線性下降至2030年的30元/千克。然而,如果未來能源價(jià)格發(fā)生任何波動(dòng),上述新能源貨車的TCO平價(jià)年份也將發(fā)生變化。例如,如果未來柴油價(jià)格降至2019年平均水平(即6.5元/升),而充電價(jià)格上升至1.4元/千瓦時(shí),集疏港運(yùn)輸場(chǎng)景與城市運(yùn)輸場(chǎng)景中,42噸純電動(dòng)半掛牽引車與18噸純電動(dòng)載貨汽車與燃油貨車實(shí)現(xiàn)TCO平價(jià)的時(shí)間將推遲至MY2030左右。類似地,如果柴油價(jià)格降至2019年平均水平(即65元升),即便氫氣價(jià)格保持不變,區(qū)域運(yùn)輸場(chǎng)景中,氫燃料電池貨車也無法在MY2030之前與燃油貨車如果未來燃油價(jià)格下降,有關(guān)部門有必要考慮取消現(xiàn)行燃油補(bǔ)貼(Blacketal.2023(OECD2022持新能源貨車的TCO如果2030于30元/千克,有必要在上述措施基礎(chǔ)上考慮提供氫燃料電池貨車加氫補(bǔ)貼。對(duì)縮短純電動(dòng)貨車的TCO的政策組合是可量化的(國(guó)家和地方)政策,包括:新能源貨車購置補(bǔ)貼(僅針對(duì)氫燃料電池貨車)、稅費(fèi)減免、能源(充電與加氫)補(bǔ)貼、碳價(jià)、新能源貨車優(yōu)先路權(quán)、減免新能源貨車高速收費(fèi)、提高新能源貨車最大設(shè)計(jì)總質(zhì)量,以及降低新能源貨車融資成本(即給予新能源貨車更優(yōu)惠的貸款利率)車能更快實(shí)現(xiàn)與燃油貨車的TCO多數(shù)場(chǎng)景中,純電動(dòng)貨車在MY2025之前就能實(shí)現(xiàn)與燃油貨車的TCO平價(jià),比無政策激勵(lì)的情況提前0~9年。相較之下,氫燃料電池貨車與燃油貨車的TCO平價(jià)時(shí)間提前幅度有限:即便提供比純電動(dòng)貨車更多的補(bǔ)貼,氫燃料電池貨車與燃油貨車實(shí)現(xiàn)TCO平價(jià)的時(shí)間也只能在MY2028之前,比無政策激勵(lì)的情況僅提前3~6年。在多數(shù)場(chǎng)景中,純電動(dòng)貨車實(shí)現(xiàn)TCO平價(jià)的時(shí)間比氫燃料電池貨車要早0~6年,成為政策激勵(lì)下最有成本競(jìng)爭(zhēng)力的新能源技術(shù)選項(xiàng)。

(充電與加氫高最大設(shè)計(jì)總質(zhì)量等政策,都有助于降低新能源貨車的TCO鑒于中國(guó)目前的碳價(jià)較低,只有碳價(jià)政策對(duì)縮短新能源貨車與燃油貨車TCO???(充電與加氫)補(bǔ)貼政策,對(duì)彌合新能源貨車與燃油貨車的TCO之差有顯著作用,且這些政策適用于多數(shù)運(yùn)輸場(chǎng)景;??新能源貨車優(yōu)先路權(quán)政策對(duì)區(qū)域運(yùn)輸、集疏港運(yùn)輸場(chǎng)景更有效。這是因?yàn)楸疚募僭O(shè)優(yōu)先路權(quán)政策有助于減少新能源貨車的繞行,進(jìn)而降低其行駛里程。由于區(qū)域運(yùn)輸、集疏港運(yùn)輸這兩個(gè)場(chǎng)景中的車輛行駛里程都較長(zhǎng),因此,優(yōu)先路權(quán)政策更有效;??減免新能源貨車高速收費(fèi),對(duì)區(qū)域運(yùn)輸和集疏港運(yùn)輸場(chǎng)景中,降低42噸半掛牽引車TCO有更好的效果。這是因?yàn)?2噸半掛牽引車在這兩個(gè)場(chǎng)景中的高速行駛里程占總里程的比例較大,且因軸數(shù)較多,單位里程的高速收費(fèi)更高;??提高新能源貨車最大設(shè)計(jì)總質(zhì)量政策(即給予新能源貨車的車貨總重一定程度的豁免)能夠有效降低新能源貨車在重貨運(yùn)輸場(chǎng)景下的TCO;?降低新能源貨車融資成本(即給予新能源貨車更優(yōu)惠的貸款利率)有助于城市運(yùn)輸場(chǎng)景下縮短新能源貨車實(shí)現(xiàn)與燃油貨車TCO平價(jià)的時(shí)間。補(bǔ)貼對(duì)降低其TCO但有關(guān)部門應(yīng)避免購置補(bǔ)貼導(dǎo)致的貨車運(yùn)力過剩問題。在本文假設(shè)的氫燃料電池貨車購置補(bǔ)貼政策下,所有場(chǎng)景中的氫燃料電池貨車都將有望在MY2026—MY2030實(shí)現(xiàn)與燃油貨車的TCO平價(jià),最多比無政策激勵(lì)的情況提前2年。值得注意的是,若政府提供大量購置補(bǔ)貼刺激新車銷售,可能擾亂貨車運(yùn)力供給,降低新能源貨車的成本競(jìng)爭(zhēng)力(PersComm2023a)。因此,政府應(yīng)避免提供高額購車補(bǔ)貼,而應(yīng)考慮置換補(bǔ)貼或其他非補(bǔ)貼措施(如新能源貨車優(yōu)先路權(quán)政策)。18200千米

200千米

500千米

-500千米

FCET(純氫31重貨-200千米 重貨-300千米

FCET(純氫C.42200千米

500千米

200千米

-500千米203020302030FCET(純氫42噸半掛牽引車,DDCDDC_TRIPDDC_DVKT縮略詞:BET純電動(dòng)貨車;FCET=氫燃料電池貨車;純氫純氫模式;UD=城市運(yùn);RD=區(qū)域運(yùn);DDC=集疏港運(yùn);DDC_TRIP=集疏港運(yùn)(“單程運(yùn)距”法);DDC_DVKT=集疏港運(yùn)(“日降低新能源貨車CO也同樣重要。盡管在多數(shù)運(yùn)輸場(chǎng)景中,新能源貨車將在MY2030前實(shí)現(xiàn)與燃油貨車的TCO平價(jià),但其購置成本仍高于燃油貨車。例如,本研究表明,到MY2030,新能源貨車的購置成本仍比燃油貨車高出53%~322%。為減輕運(yùn)輸企業(yè)(特別是小微運(yùn)輸企業(yè))新能源貨車初期購買時(shí)的一次性費(fèi)用,并將購置與持有風(fēng)險(xiǎn)分?jǐn)偨o適宜的主體(如新能源貨車租賃企業(yè)及平臺(tái)、主機(jī)廠、金融機(jī)構(gòu)等),可考慮推廣新能源貨車經(jīng)營(yíng)性租賃等創(chuàng)新商業(yè)模式。未來,如果在更多場(chǎng)景中推廣新能源貨車創(chuàng)新商業(yè)模式,政府部門與金融機(jī)構(gòu)等應(yīng)采取更多支持性的措施,包括但不限于:幫助租賃平臺(tái)降低新能源貨車貸款首付比例,提供貸款利率優(yōu)惠并延長(zhǎng)貸款期限,鼓勵(lì)綠色金融或混合融資,為其租賃業(yè)務(wù)提供稅收優(yōu)惠與靈活折舊等,以及考慮為小微運(yùn)輸企業(yè)的租賃業(yè)務(wù)提供第一損失擔(dān)保,

對(duì)沖相關(guān)風(fēng)險(xiǎn)等(Sankaretal.2022;Koketal.2023;Coyneetal.2023)。部分場(chǎng)景下MY2030新能源貨車與由于集疏港運(yùn)輸場(chǎng)景中的起始點(diǎn)/目的地以及運(yùn)營(yíng)時(shí)刻表相對(duì)固定,車輛會(huì)定期返回港口(或港口附近停車場(chǎng)),并在相對(duì)較小的區(qū)域范圍內(nèi)運(yùn)營(yíng),因而,具備條件的運(yùn)輸企業(yè)可選擇電池容量較小的純電動(dòng)半掛牽引車,并部署足夠多的快充基礎(chǔ)設(shè)施,實(shí)現(xiàn)“一天多充”,從而降低純電動(dòng)貨車購置成本與TCO。為支持小容量電池的純電動(dòng)貨車,相關(guān)企業(yè)需要對(duì)充電基礎(chǔ)設(shè)施布局與運(yùn)營(yíng)分別進(jìn)行優(yōu)化,包括在運(yùn)輸?shù)钠鹗嫉?目的地、中途、工廠停車場(chǎng)與物流場(chǎng)站部署足夠數(shù)量的快充基礎(chǔ)設(shè)施,保障充足的停車位數(shù)量與電網(wǎng)容量(Kotzetal.2022);此外,運(yùn)輸企業(yè)也需要協(xié)調(diào)純電動(dòng) a.4.5噸輕型普通貨 b.42噸半掛牽引0

0

(NEICEV)/ICEV。百分比為零,表示新能源貨車購置成本與燃油貨車相同。這里,購置成本不考慮任何政策影響,包括新能源貨車購置補(bǔ)貼或燃油貨車購置稅對(duì)購置成本的影響??s略詞:BET=純電動(dòng)貨車;FCET=氫燃料電池貨車;NEV=新能源汽車;ICEV=燃油汽車;UD=城市運(yùn);RD=區(qū)域運(yùn);PO_TRIP=港口內(nèi)運(yùn)(“單程運(yùn)距”法);DDC_DVKT=集疏港運(yùn)(“日行駛里程”法);DDC_TRIP=集疏港運(yùn)(“單程運(yùn)距”法)。源貨車能量消耗量改進(jìn)以及載質(zhì)量損失改善,氫燃料電池貨車TCO下降將主要依靠燃料電池系統(tǒng)成本與氫氣價(jià)格的下降。設(shè)計(jì)廣泛適用的純電動(dòng)貨車。不同場(chǎng)景下,純電動(dòng)及運(yùn)輸企業(yè)采購適合的純電動(dòng)貨車帶來挑戰(zhàn),尤其是考慮本文分析顯示,未來新能源貨車的能

量消耗量(包括新能源貨車與燃油貨車的能效比)對(duì)其實(shí)現(xiàn)TCO平價(jià)的時(shí)間有較大影響,因此,建議有關(guān)部門收集新能源貨車不同場(chǎng)景、不同工況下的實(shí)際能量消耗量數(shù)據(jù),并考慮出臺(tái)針對(duì)新能源貨車能量消耗量的標(biāo)準(zhǔn)。此外,目前在運(yùn)營(yíng)的燃油貨車分場(chǎng)景的日/年行駛里程信息、道路流量信息、貨車停車信息等數(shù)據(jù),對(duì)識(shí)別近期適宜新能源貨車推廣的場(chǎng)景,規(guī)劃充電/加氫基礎(chǔ)設(shè)施、配置新能源貨車參數(shù)都起到重要作用,因此,建議有關(guān)部門收集這些統(tǒng)計(jì)數(shù)據(jù)并與行業(yè)相關(guān)方分享,以支持精細(xì)化的政策制定與企業(yè)投資。TCQTLCandMOV3MENT202)因此,除本文涉及的政策組合以外,有關(guān)部門還應(yīng)統(tǒng)籌 例如,本文分析顯示,同為集疏港運(yùn)輸場(chǎng)景,唐山市49噸BET100半掛牽引車在MY2022就已實(shí)現(xiàn)與柴油半掛牽引車的TCO平價(jià),比本文中深圳市42噸BET200半掛牽引車實(shí)現(xiàn)TCO平價(jià)的時(shí)間更早,如圖ES-4所示。ES-4|深圳市和唐山市集疏港運(yùn)輸場(chǎng)景中新能源半掛牽引車與柴油半掛牽引車實(shí)現(xiàn)TCOBET

FCET(混合

FCET(純氫)貨車車型行駛工況貨物類型(千米2030 重說明:本文假設(shè)唐山市集疏港運(yùn)場(chǎng)景的單程運(yùn)距為100千米,深圳市集疏港運(yùn)場(chǎng)景的單程運(yùn)距為200千米。此外,MY2022唐山市49噸柴油半掛牽引車的能量消耗量為64升/100千米,230/10018/100千米。E=FCET=氫燃料電池貨車;混合=插電式混合動(dòng)力模式;純氫=DDC_TRIP=集疏港運(yùn)DDC_DVKT=集疏港運(yùn)。來源:作者計(jì)算。EXECUTIVESUMMARY?Totacklesmallfleetoperators’concernsandacceleratezero-emissiontruck(ZET)adoption,weassessedthetechno-economicfeasibilityofZETsoverthetimeframeof2022?2030acrossusecasesindifferentmodelyears(MYs)forShenzhenandFoshaninGuangdongProvince.??Thepromotionofbatteryelectrictrucks(BET)inurbandelivery,portoperation,anddrayagedutycyclesshouldbeprioritizedbecausetheirtotalcostofownership(TCO)paritywithdieseltruckswillbereachedbeforeMY2025,particularlywithcomprehensivepolicyincentives.??ProposedcomprehensivepoliciesinthisstudyareeffectivetomoveZETTCOparityyearswithdieseltrucksearlierthanMY2025inmostusecases.BETsbenefitedmorefromthecomprehensivepoliciesinTCOparityyearreductionthanfuel-cellelectrictrucks(FCETs).??ChoosingBETswithsmallerbatteries,ensuringthatchargingfacilitiesaresufficientlyavailable,andadjustingoperationschedulestoallowformultiplewithin-daychargesareimportanttoreduceBETs’TCO.??GapsinpurchasecostsbetweenZETsandinternalcombustionenginevehicles(ICEVs)remainlargebyMY2030,althoughTCOparityisreachedinmostusecases.Therefore,financingmechanismslikeleasingareessentialtoeaseZETs’up-frontcostburdens.??operationalflexibility,costeffectiveness,andmassproduction.?AboutthisToreducecarbonandairpollutantemissions,promotingZETs—referringtobatteryelectrictrucksandfuel-cellelectrictrucks—isimportant(XueandLiu2022).Unlikebusesandprivatecars,thetruckingindustryisdominatedbysmall-andmedium-sizedenterprises(SMEs)inChina(TUC2022a).Currently,ZETsinChinesecitieswereprimarilyadoptedbylargefleetoperatorsthatwerelesscost-sensitive.Now,tofurtherpromoteZETs,addressingthedemandside,particularlymorecost-consciousandlesstechnology-savvySMEs’concerns,iscriticalforZETs’futureuptake.Fromthedemandperspective,smallfleetoperatorsareoftenconcernedaboutthefollowingissuesrelatedtoZETtransition:(1)whethertheoperationofZETsistechnologicallyfeasiblewhererangeconstraintsorpayloadlosscanbeavoided;(2)whetherpurchasecostgapsbetweenZETsandICEVsareacceptablysmall;and(3)whetherTCOparitywithequivalentICEtruckscanbereached(Toletal.2022).Totackledemand-sideconcernsandrampupZETadoption,itisimportanttounderstandthecurrentoperationalandcostchallengesofZETs,whatinterventionsareeffectiveinovercomingthechallenges,andwhichusecaseandzero-emissiontechnologytoprioritizeandwhen.Toaddressthequestionsmentionedearlier,thisstudychoosesoneofChina’sfront-runnerregions

ofZETtransition,GuangdongProvince,asanexample.Toreducethedatacollectionefforts,wechoosethecitiesofShenzhenandFoshaninGuangdongforin-depthanalysis.ThetwoarenotonlyleadingZETtransitionsinGuangdong,butalsosetambitiousgoalsforZETadoption.?Weassessedthetechno-economicfeasibilityofZETsoverthetimeframeof2022–2030acrossdifferentusecasesandMYs.Thebaseyearissetto2022wherethemostrecentdataareavailable.Theanalysiswascarriedoutfor14localizedusecases:??Fivetrucksegments,includingdeliveryvans,4.5-t(ton)light-dutytrucks(LDTs),18-tstraighttrucks,31-tdumptrucks,and42-ttractortrailers.??Fourdutycycles,namely,urbandelivery(UD),regionaldelivery(RD),portoperation(PO),anddrayagedutycycles(DDC).?Twotypesofgoodstransported,includinglightcargoandheavycargo.?Inthisstudy,thetechno-economicfeasibilityofZETsisassessedindifferentusecases,basedonthreevariablesessentialforsmallfleetoperatorstodecideifZETtransitionisfeasible(Hunteretal.2021;Toletal.2022):?ZETs’operationalfeasibility.Inthisstudy,operationalfeasibilityisevaluatedbythe ?sizesofkeycomponentsforZETs,includingenergystoragecapacities,peakpoweroutputs,andcurbweights,tomeettherangesandwheelpowerdemandsindifferentusecasesduringMY2022andMY2030.TheresultingcomponentsizingisusefultofindtheproperZETmodelsforthegivenusecasethatcancomeatareasonablecostandmeettheday-to-dayoperationalrequirements.??DifferencesofpurchasecostsbetweenZETsandICEVs.Here,ZETs’purchasecostsareprojectedbasedonthetechnologyprogressofkeycomponents(suchasbatterypacks,electricdrives,fuelcell(FC)systems,andhydrogenstoragetanks)characterizedbythelearningcurveoutlinedbyYelle(1979)inwhichthereductioninunitcostsofeachkeycomponentisafunctionofaccumulatedproductionvolumes.Wefurtheremployedexistingliteratureandmarketpredictionstovalidateandadjustthe?TCOgapsbetweenZETsandICEVs.TCOwasevaluatedbyaddingupthecapital,operation,andmaintenanceexpenditureofthevehicles;themid-lifereplacementcostsofkeycomponents(suchasbatterypacks);andtheopportunitycostsofthelossinZETs’payloadcapacity.Duetolimiteddataavailability,costssuchasvehicleresidualvaluesandrefuelinglaborcostsarenotconsideredinthisstudy.Theusecaseswithnear-termopportunitiesforZETtransitionareidentified,basedonZETs’TCOparityyearswithICEVs.Further,weevaluatethepossiblerolesplayedbydifferentinterventions—includingtechnologicaldevelopment,policyincentives,operationalimprovements,andbusinessmodels—inaffectingthepreviouslymentioneddecisionvariablesandinacceleratingtheachievementoradvancesofTCOparityyearsrelativetodieseltrucks.Further,weusedanexampletoillustrateiftheconclusionscouldbeappliedtoothercitiesanddiscussedthecaveatsanduncertaintiesoftheanalysis.ResearchWithoutZETincentives,BETpromotioninPO,DDC,andurbandelivery(UD)couldbeprioritized,giventhattheTCOparity

withICEtrucksintheseusecaseswillbereachedearlierthanotherusecases.BETs,exceptfordumptrucks,haveTCOcostadvantagesinPO,DDC,andUDinabsenceofZETincentives.Intheseuse?cases,BETswillreachTCOparityrelativetoICEVcounterpartsbeforeMY2027.ThisisbecauseBETsaremuchmoreenergyefficientthanICEVsinPOandUDbytakingadvantageoffrequentstop-and-goestorecoupenergiesfromregenerativebraking.Bycontrast,batteryelectricdumptrucksarelesscostadvantageous,becauseoftheprominentpayloadlossissue.Particularlyintwoinstances:?Battery-electric42-ttractortrailersinPO,DDC,andUDwillreachTCOparitywithdieseltractortrailersbeforeMY2025,representingoneofthemostpromisingtrucksegmentstobeelectrifiedatthemoment.Thisisbecause:(1)BETtractortrailersinShenzhenandFoshanmostlycarrylightweightgoodsand(2)operationaloptimizationmeasurestakenbyfleetoperatorsinDDC—includingusingsmallbatterycapacitiestofulfilltheoperationandmatchingBETconfigurationswithcharging?facilityavailability—arehelpfulforBETtoreachTCOparityearly,relativetodieseltrucks.?Battery-electric4.5-tLDTsandstraighttrucksinUDwillreachTCOparityrelativetotheirdieselcounterpartsbyMY2027.Particularly,whencarryinglightweightgoods,bothvehiclesegmentshaveachievedcostparitynow(MY2022–2023),whereaswhentransportingheavygoods,theparityyearswillbepostponedtoMY2025–2027afterbeingpenalizedforthepayloadlosses.Bycontrast,FCETs’TCOarelowerthanBETsinRD.InRD,ZETs’TCOcostparityrelativetoICEVswillbeachievedaroundMY2028–2030,muchlaterthanUD.BETsarelesscostadvantageousinRDbecause:(1)ICEVsarerelativelymoreenergy-efficientforhigh-speedhighwaydrivingthanurbandriving;(2)forsimplicity,thisstudydoesnotdifferentiateFCETs’energyefficiencybetweenUDandRD;therefore,wemayhavegivenFCETsmorecostadvantagesinRD.FigureES-1|ZETTCOparityrelativetoICEVsforalluseBET

FCET

FCET(H2-only)Light

Above4.5-t18-

HeavyHeavyLightHeavyLight Heavy 31-tdump42-

LightHeavygoodsHeavyLight

Note:Thisstudyassumesthattheusefullifeofthe31-tdumptruckisfiveyearsandthatofothervehiclesegmentsaresixyearsbasedonPers.Comm.Abbreviations:TCO=totalcostofownership;BET=batteryelectrictruck;FCET=fuelcellelectrictruck;ICEV=internalcombustionenginevehicle;H2-only=hydrogen-onlymode;hybrid=hybridmode;VKT=vehiclekilometerstraveled;UD=urbandelivery;RD=regionaldelivery;PO_TRIP=portoperation(usingthetripdistancemethod);PO_DVKT=portoperation(usingSource:WRIauthors’ChangesinenergypriceswillgreatlyaffectZETs’parityyearswithICEtrucksinsomeusecases.ThepreviouslymentionedconclusiononTCOparityyearsisvalidwhenthedieselpriceisatthe2022levelof8.1ChineseYuan(CNY)/literandthechargingcostisfixedat1.2CNY/kWh.Ifdieselpricesdroptothe2019and2021averagepriceof6.5CNY/L,andchargingcostsrisesto1.4CNY/kWhandabove(duetowidespreadadoptionofultra-fastchargers),batteryelectrictruckswillachieveTCOparitywithdieseltrucksatamuchlatertimefor42-ttractortrailersinDDC(parityyear=~MY2030)and18-ttonstraighttrucksinUDwithlightgoodstransportation(parityyear=~MY2030).Similarly,forFCETs,ifthedieselpricesremainatthe2022level,thebreak-evengreenhydrogenpriceinMY2030isaround30CNY/kg.However,ifthedieselpricesdroptothe2021averageprice,FCETsareunlikelytoachieveTCOparitywithdieseltrucksatanytimebeforeMY2030.Therefore,withlowerdieselprices,removalofdieselsubsidies(Blacketal.2023),increasedtaxesondieselprices(OECD2022),oralternativeenergyincentives(onelectricityandhydrogen)shouldbeconsidered,tomaintainthecostcompetitivenessofZETs.ComprehensivepoliciesareeffectivetomoveZETTCOparityyearswithICEtrucksearlier,especiallyforBETs.Inthisstudy,wefocusonthecomprehensive(nationalandlocal)policiestheimpactsofwhichonTCOcanbequantifiedunderthisstudy’sTCOmethodologyframework,includingpurchasesubsidy,taxexemption,energy(electricity/hydrogenfuel)incentives,carbonpricingonconventionalfuels,roadaccessprivileges,reductionofexpresswayroadtolls,increasesofmaximumauthorizedweightsofZETs(alsoknownasZETweightallowance),andfinancingcostreductions.Thereisnosilverbullet.ComprehensivepolicyincentivesaremoreeffectivetobringingforwardZETs’TCOparityyearstoanearlierdatethansinglemeasures.BETs’TCOparityyearsbenefitmorefromtheproposedcomprehensivepoliciesinthisstudy.Underthecombinationoftheproposedpoliciesinthis

study(withoutaBETpurchasesubsidy),BETswillreachTCOparitywithdieselcounterpartsinmostusecasesbeforeMY2025,zerotonineyearsearlierthanthecasewithoutpolicyincentives.Bycontrast,evenwithgreateramountsofsubsidies(includinganFCETpurchasesubsidy),FCETswillreachTCOparitywithdieselcounterpartsbeforeMY2028,threetosixyearsearlierthanthecasewithoutpolicyincentives.Overall,withtheeightproposedpolicyincentives,theTCOparityyearsofBETsarezerotosixyearsearlierthanFCETsinmostusecases,makingBETsthemostcost-competitiveZEToption.TheimpactsofpoliciesonZETs’TCOparityyearsandTCOreductionareusecase-specific.ZETsbenefitfromtheproposedpoliciesoftaxexemption,energyincentives,roadaccessprivileges,reductionofexpresswayroadtolls,financingcostreduction,andincreases?ofmaximumauthorizedvehicleweightsinthisstudyinTCOreduction.TheimprovementincostparityisnotsignificantwhenapplyingthecarbonpricingmeasureduetoChina’scurrentlowcarbonprices.Specifically,??theproposedpurchaseandownershiptaxexemptionandenergyincentivesareessentialtobridgetheTCOgapsbetweenZETsandICEVs,formostusecases;??inRDandDDCbecauseweassumethatthepolicyworksonvehiclekilometerstraveled(VKTs),andbothusecaseshavelongVKTs;??thereductionofexpresswayroadtollsismoreinfluentialfor42-tontractortrailers’RDandofVKTsonexpresswaysandhightollrates;??theZETweightallowanceisusefulforheavygoodstransportation;and?thefinancingcostreductionisconducivetomovingforwardTCOparityyearsinUD.TheFCETpurchasesubsidyanalyzedinthisstudyisfoundtobeoneofthemostinfluentialpolicyinterventionsforFCETs’TCOreduction;butgovernmentsshouldrefrainfromusinglargepurchasesubsidiestoboostZETadoptiontoavoidoversupplyoftruckcapacitiesinthemarket.Withthepurchasesubsidyassumedinthisstudy,FCETs’timetoTCOparityisreducedbyzerototwoyearsforallusecases,achievingTCOparitywithitsdieselcounterpartbyMY2026–2030.Ofnote,consideringthat

publicsubsidiestopromoteZETswoulddistortthemarketsupplyoftruckcapacitiesandreduceZETs’costcompetitiveness(Pers.Comm.2023a),governmentsshouldrefrainfromusinglargepurchasesubsidiestostimulateZETadoption.Instead,scrappagesubsidiesorothernon-subsidymeasuressuchasroadaccessprivilegesofferviablealternatives.FigureES-2|ZETTCOparityrelativetoICEVswithpolicy18-tstraightLightgoods-200km

Heavygoods-200km

Lightgoods-500km

Heavygoods-500km 202220232024202520262027202820292030 202220232024202520262027202820292030NoTaxexemptionFinancingChargingaccesschargeweightCarbonPolicyNoTaxexemptionFinancingPurchaseHydrogenaccesschargeweightCarbonPolicyFCET(H2-FigureES-2|ZETTCOparityrelativetoICEVswithpolicyincentives31-tdumpHeavygoods-200km Heavygoods-300km

NoFinancingRoadFCET(H2-only)NopolicyFinancingRoadRoadchargeFigureES-2|ZETTCOparityrelativetoICEVswithpolicyincentives42-ttractorLightgoods-200km

Lightgoods-500km

Lightgoods-200km

Lightgoods-500kmAboveAboveAboveNoFinancingRoadRoadchargeFCET(H2-NoFinancingRoadRoadchargeNote:Fora42-ttractortrailer,DDCdenotestheDDC_TRIPusecasesforBETsandtheDDC_DVKTusecasesforSource:WRIauthors’Apartfrompolicies,financingmechanisms,operationaloptimization,andtechnologyimprovementsarealsoessentialtoacceleratetheadoptionofFinancingmechanismsareessentialtoeaseZETs’up-frontpurchasecosts.AlthoughtheTCOparitywithICEtrucksisreachedinmostusecasesbyMY2030,tremendousgapsinpurchasecostsbetweenZETsandICEVsremain.ByMY2030,thepurchasecostsofZETsarestill53to322percenthigherthanthoseofICEVsinallusecasesexaminedbythisstudy.Toeasefleetoperators’burdenoncostlyupfrontexpensesofZETs—particularlyforsmallfleetoperators—andallocatetherisksofZETtransitiontoappropriatestakeholders,itisnecessaryforprivateandpublicplayerstotakeactions,includingreducingtheminimumdownpaymentrequirementsonZETloans;encouragingZETleasingorbatteryswapping;unlocking

finance(throughreducedinterestedratesandextendedrepaymentterms)andblendedfinanceforZETfinancing;andprovidingtaxbenefits,flexibledepreciation,orfirstlossguaranteesfornewbusinessmodels.Operationaloptimizationisanecessarymeasuretoreducecostsandimproveoperationalfeasibility.AsinthecaseofDDC,choosingBETswithsmallerbatteries,ensuringchargingfacilitiesaresufficientlyavailable,andadjustingoperationschedulestoallowBETsformorethanonechargeadayareimportanttoreduceBETs’TCO.Forthistypeofoperationtowork,itiscrucialtohave:(1)broadavailabilityof(ultra)-fastchargingfacilities,parkingspaces,andgridcapacitiesattheDDC’scustomerlocations(Kotzetal.2022);and(2)BETs’operationschedulesthatallowforsufficientchargingtimewindows—forexample,timingchargingwithloading(orunloading)oftrucksorbreaktimesofdrivers.FigureES-3|PercentagedifferencesinpurchasecostsbetweenZETsandICEVsfor a.4.5-t b.42-ttractor0

0

Note:ThepercentagerepresentsthedifferenceinthepurchasecostsbetweenZETsandcomparableICEVsdividedbythepurchasecostsofICEVs,thatis,(ZET-ICEV)/ICEV.ZeropercentindicatesnodifferencebetweenthepurchasecostsofZETsandICEVs.Nopurchasesubsidyortaxisconsideredforthepurchasecosts.Abbreviations:BET=batteryelectrictruck;FCET=fuelcellelectrictruck;ICEV=internalcombustionenginevehicle;VKT=vehiclekilometerstraveled;UD=urbandelivery;RD=regionaldelivery;PO_TRIP=portoperation(usingthetripdistancemethod);DDC_DVKT=drayagedutycycle(usingthedailyVKTmethod);DDC_TRIP=drayagedutycycle(usingthetripdistancemethod).Source:WRIauthors’AcceleratingtechnologydevelopmentsisessentialtoreduceZET’sTCOandmoveitsparityyearstoanearlierBatterycostreduction,vehicleenergy-efficiencyimprovement,andbatteryenergydensityincreasesarecriticalforreducingBETs’TCO,whilethecostreductionoftheFCsystemsandgreenhydrogenpricesareessentialtobringdownFCETs’TCO(FCsystemcostsaremoreinfluentialforUD,whilehydrogenpricesaremoreimportantforRD).ItisimportanttodesignBETswithflexibility.SignificantvariationsinBETbatterycapacitiesexist.Forexample,evenwithinthesame-usecase,thedifferencesinbatterycapacitiesofBETsexaminedinthisstudycouldvaryby51kWhto322kWhinMY2025.Giventheday-to-dayoperationalvariabilityofsmallfleetoperators,designingabroadlyapplicableBETthatiscapableofmeetingthemajorityoperation(intermsofranges)inanoften-appliedusecasecritical.ThismeansbothOriginalEquipmentManufacturers(OEMs)andfleetoperatorsshouldhaveathoroughunderstandingexistingdieselfleets’dailymileageDa?ta-drivenandmulti-dimensionalpolicymakingisnecessary.1.DataonZETs’energyefficiencyandexistingdieseltruckfleets’mileageareimportanttoimprovetheTCOestimationandtoinformpolicymaking.EnergyefficiencywouldgreatlyaffectZETs’parityyearsanddeterminewhichusecasetoprioritizeZETpromotion.Further,truckfleets’mileageprofilesarealsocriticaltothedesignofbroadlyapplicableZETs.Therefore,itisimportantforgovernmentstogatherZETs’real-worldenergy-efficiencyandICEVs’mileagedatabyusecaseandshareamongkeystakeholders,suchasOEMs.2.Fleetoperatorsinrealitywouldtakemultiplefactorsintoconsideration,suchasthesafetyandsecurityofZETs,shippers’requirements,marketandprofitability,andcustomers’awarenessoftherecentdevelopmentofZETswhen

decidingifZETtransitionisfeasibleandMOV3MENT2022).Therefore,itisalsonecessarytogobeyondthepoliciesexaminedinthisstudytoconsidermorepolicyoptions,suchasenhancingZETs’firesafety,enforcingairpollutionpreventionpolicies,improvingZETs’residualvalues,andorganizingpubliceducationcampaigns(particularlyforsmallfleetoperators).Th?econclusionsfromthestudybeapplicabletocitieswithsimilarusecasecharacteristics,includingtrucksegmentdeployed,typeofgoodstransported,drivingcycles,andambienttemperature.Citieswithdifferentcharacteristicsshouldbecautiouswhenapplyingthisstudy’sconclusions.Forexample,a49-tonBET100tractortrailerinTangshan’sDDChadreachedTCOparitywithitsdieselcounterpartinMY2022,earlierthanShenzheninthisstudy.ThisisbecausetractortrailersinTangshandonotrequirelargebatterycapacities(tripdistanceswithin100km)andhavealargeproportionofthedailyVKTsperformedneardocksorintheurbanenvironment(Maoetal.2023). FigureES-4|ZETs’TCOparityyearsrelativetoICEtrucksfortheDDCusecaseinShenzhenandBET

FCET

FCET(H2-only)新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析新能源貨車在城市和區(qū)域運(yùn)輸場(chǎng)景中的技術(shù)與經(jīng)濟(jì)可行性分析以中國(guó)廣東省為 49-ttractorHeavyLight42-ttractorAboveVEHICLEDUTYCYCLECARGOTYPEDAILYNote:ThisstudyassumesthatthetripdistanceforTangshan’sDDCusecaseis100km,whilethatforShenzhenis200km.Further,theenergyconsumptionofaMY202249-tdieseltractortraileris64L/100km,aBETis230kWh/100km,andanFCETis18kg/100km.Abbreviations:BET=batteryelectrictruck;FCET=f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論