




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023屆烏海市重點(diǎn)中學(xué)高三第三次統(tǒng)考數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.2.已知集合的所有三個(gè)元素的子集記為.記為集合中的最大元素,則()A. B. C. D.3.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線(xiàn)相連(弧的兩端各一個(gè),導(dǎo)線(xiàn)接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線(xiàn)最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米4.函數(shù)的定義域?yàn)椋ǎ〢.或 B.或C. D.5.已知是雙曲線(xiàn)的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線(xiàn)漸近線(xiàn)的對(duì)稱(chēng)點(diǎn)滿(mǎn)足(為坐標(biāo)原點(diǎn)),則雙曲線(xiàn)的漸近線(xiàn)方程為()A. B. C. D.6.已知函數(shù),則()A. B.1 C.-1 D.07.已知函數(shù)是上的偶函數(shù),且當(dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.8.橢圓的焦點(diǎn)為,點(diǎn)在橢圓上,若,則的大小為()A. B. C. D.9.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.10.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿(mǎn)足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.11.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件12.已知變量的幾組取值如下表:12347若與線(xiàn)性相關(guān),且,則實(shí)數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.集合,,若是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,則下列說(shuō)法正確的為_(kāi)_______①的值可以為2;②的值可以為;③的值可以為;14.已知數(shù)列的前項(xiàng)和為,,且滿(mǎn)足,則數(shù)列的前10項(xiàng)的和為_(kāi)_____.15.已知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,則實(shí)數(shù)的范圍為_(kāi)_____.16.已知盒中有2個(gè)紅球,2個(gè)黃球,且每種顏色的兩個(gè)球均按,編號(hào),現(xiàn)從中摸出2個(gè)球(除顏色與編號(hào)外球沒(méi)有區(qū)別),則恰好同時(shí)包含字母,的概率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線(xiàn)相切,動(dòng)圓圓心的軌跡為,過(guò)作斜率為的直線(xiàn)與交于兩點(diǎn),過(guò)分別作的切線(xiàn),兩切線(xiàn)的交點(diǎn)為,直線(xiàn)與交于兩點(diǎn).(1)證明:點(diǎn)始終在直線(xiàn)上且;(2)求四邊形的面積的最小值.18.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線(xiàn)段的長(zhǎng).(2)若為線(xiàn)段上一點(diǎn),且,求二面角的余弦值.19.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的值域;(2),,求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個(gè)極值點(diǎn)為,,求的最小值.21.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(diǎn)(1)求證:平面平面;(2)設(shè)為的中點(diǎn),為上的動(dòng)點(diǎn)(不與重合)求二面角的正切值的最小值22.(10分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且,(,且)(1)求數(shù)列的通項(xiàng)公式;(2)證明:當(dāng)時(shí),
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.2.B【解析】
分類(lèi)討論,分別求出最大元素為3,4,5,6的三個(gè)元素子集的個(gè)數(shù),即可得解.【詳解】集合含有個(gè)元素的子集共有,所以.在集合中:最大元素為的集合有個(gè);最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點(diǎn)睛】此題考查集合相關(guān)的新定義問(wèn)題,其本質(zhì)在于弄清計(jì)數(shù)原理,分類(lèi)討論,分別求解.3.B【解析】
由于實(shí)際問(wèn)題中扇形弧長(zhǎng)較小,可將導(dǎo)線(xiàn)的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線(xiàn)長(zhǎng)度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.4.A【解析】
根據(jù)偶次根式被開(kāi)方數(shù)非負(fù)可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域?yàn)榛?故選:A.【點(diǎn)睛】本題考查具體函數(shù)定義域的求解,考查計(jì)算能力,屬于基礎(chǔ)題.5.B【解析】
先利用對(duì)稱(chēng)得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線(xiàn)方程.【詳解】如圖所示:由對(duì)稱(chēng)性可得:為的中點(diǎn),且,所以,因?yàn)?,所以,故而由幾何性質(zhì)可得,即,故漸近線(xiàn)方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng)點(diǎn)的知識(shí),考查了雙曲線(xiàn)漸近線(xiàn)方程,由題意得出是解題的關(guān)鍵,屬于中檔題.6.A【解析】
由函數(shù),求得,進(jìn)而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點(diǎn)睛】本題主要考查了分段函數(shù)的求值問(wèn)題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7.D【解析】
利用對(duì)數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【詳解】因?yàn)?,,?又,故.因?yàn)楫?dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對(duì)數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時(shí)注意選擇合適的中間數(shù)來(lái)傳遞不等關(guān)系,本題屬于中檔題.8.C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點(diǎn)睛】本題考查橢圓的定義,考查余弦定理,考查運(yùn)算能力,屬于基礎(chǔ)題.9.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.10.C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱(chēng).
∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C11.C【解析】
根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.12.B【解析】
求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點(diǎn)睛】本題考查線(xiàn)性回歸直線(xiàn)方程,由性質(zhì)線(xiàn)性回歸直線(xiàn)一定過(guò)中心點(diǎn)可計(jì)算參數(shù)值.二、填空題:本題共4小題,每小題5分,共20分。13.②③【解析】
根據(jù)對(duì)稱(chēng)性,只需研究第一象限的情況,計(jì)算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對(duì)稱(chēng)性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點(diǎn)所構(gòu)成的集合,故所在的直線(xiàn)的傾斜角為,,故:,解得,此時(shí),,此時(shí).故答案為:②③.【點(diǎn)睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,利用對(duì)稱(chēng)性是解題的關(guān)鍵.14.1【解析】
由得時(shí),,兩式作差,可求得數(shù)列的通項(xiàng)公式,進(jìn)一步求出數(shù)列的和.【詳解】解:數(shù)列的前項(xiàng)和為,,且滿(mǎn)足,①當(dāng)時(shí),,②①-②得:,整理得:(常數(shù)),故數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,所以(首項(xiàng)不符合通項(xiàng)),故,所以:,故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式的求法及應(yīng)用,數(shù)列的前項(xiàng)和的公式,屬于基礎(chǔ)題.15.【解析】
由復(fù)數(shù)對(duì)應(yīng)的點(diǎn),在第二象限,得,且,從而求出實(shí)數(shù)的范圍.【詳解】解:∵復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,∴,且,∴,故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.16.【解析】
根據(jù)組合數(shù)得出所有情況數(shù)及兩個(gè)球顏色不相同的情況數(shù),讓兩個(gè)球顏色不相同的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】從袋中任意地同時(shí)摸出兩個(gè)球共種情況,其中有種情況是兩個(gè)球顏色不相同;故其概率是故答案為:.【點(diǎn)睛】本題主要考查了求事件概率,解題關(guān)鍵是掌握概率的基礎(chǔ)知識(shí)和組合數(shù)計(jì)算公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析(2)最小值為1.【解析】
(1)根據(jù)拋物線(xiàn)的定義,判斷出的軌跡為拋物線(xiàn),并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線(xiàn)的方程,由此求得點(diǎn)的坐標(biāo).寫(xiě)出直線(xiàn)的方程,聯(lián)立直線(xiàn)的方程和曲線(xiàn)的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線(xiàn)上,且.(2)設(shè)直線(xiàn)的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動(dòng)圓過(guò)定點(diǎn),且與直線(xiàn)相切,∴動(dòng)圓圓心到定點(diǎn)和定直線(xiàn)的距離相等,∴動(dòng)圓圓心的軌跡是以為焦點(diǎn)的拋物線(xiàn),∴軌跡的方程為:,設(shè),∴直線(xiàn)的方程為:,即:①,同理,直線(xiàn)的方程為:②,由①②可得:,直線(xiàn)方程為:,聯(lián)立可得:,,∴點(diǎn)始終在直線(xiàn)上且;(2)設(shè)直線(xiàn)的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時(shí)取等號(hào),∴四邊形的面積的最小值為1.【點(diǎn)睛】本小題主要考查動(dòng)點(diǎn)軌跡方程的求法,考查直線(xiàn)和拋物線(xiàn)的位置關(guān)系,考查拋物線(xiàn)中四邊形面積的最值的計(jì)算,考查運(yùn)算求解能力,屬于中檔題.18.(1)的長(zhǎng)為4(2)【解析】
(1)分別以所在直線(xiàn)為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計(jì)算得到答案.(2)計(jì)算平面的法向量為,為平面的一個(gè)法向量,再計(jì)算向量夾角得到答案.【詳解】(1)分別以所在直線(xiàn)為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因?yàn)?,所以,即,解得,所以的長(zhǎng)為4.(2)因?yàn)?,所以,又,?設(shè)為平面的法向量,則即取,解得,所以為平面的一個(gè)法向量.顯然,為平面的一個(gè)法向量,則,據(jù)圖可知,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何中的線(xiàn)段長(zhǎng)度,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.19.(1);(2).【解析】
(1)將代入函數(shù)的解析式,將函數(shù)的及解析式變形為分段函數(shù),利用二次函數(shù)的基本性質(zhì)可求得函數(shù)的值域;(2)由參變量分離法得出在區(qū)間內(nèi)有解,分和討論,求得函數(shù)的最大值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.函數(shù)的值域?yàn)?;?)不等式等價(jià)于,即在區(qū)間內(nèi)有解當(dāng)時(shí),,此時(shí),,則;當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,則.綜上,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查含絕對(duì)值函數(shù)的值域與含絕對(duì)值不等式有解的問(wèn)題,利用絕對(duì)值的應(yīng)用將函數(shù)轉(zhuǎn)化為二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵,考查分類(lèi)討論思想的應(yīng)用,屬于中等題.20.(1)(2)【解析】分析:(1)先求導(dǎo),再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個(gè)極值點(diǎn)故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點(diǎn)睛:(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導(dǎo)數(shù)求函數(shù)的最值,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)本題的難點(diǎn)有兩個(gè),其一是求出,其二是構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.21.(1)見(jiàn)解析(2)【解析】
(1)推導(dǎo)出,,從而平面,由面面垂直的判定定理即可得證.(2)過(guò)作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時(shí),正切值求得最小值;【詳解】(1)因?yàn)?,面,,平面,平面,平面,又平面,平面平面;?)過(guò)作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則,時(shí)取得最大值,最大值為,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《可口可樂(lè)營(yíng)銷(xiāo)策略》課件
- 鐵道機(jī)車(chē)專(zhuān)業(yè)教學(xué)張瓊潔課件
- 雙語(yǔ)客運(yùn)值班員客運(yùn)站的設(shè)備組成課件
- 雙語(yǔ)列車(chē)長(zhǎng)安全管理規(guī)定課件
- 鐵路市場(chǎng)營(yíng)銷(xiāo)成本導(dǎo)向定價(jià)法課件
- 管道支吊架調(diào)整施工方案
- 《GB 19147-2016車(chē)用柴油》(2025版)深度解析
- 中華傳統(tǒng)文化課課件
- 大學(xué)生職業(yè)規(guī)劃大賽《種子科學(xué)與工程專(zhuān)業(yè)》生涯發(fā)展展示
- 個(gè)人職業(yè)能力訓(xùn)練課件
- 2024年榆林能源集團(tuán)有限公司招聘工作人員筆試真題
- 山東省濰坊市高密市2024-2025學(xué)年七年級(jí)下學(xué)期4月期中數(shù)學(xué)試題(原卷版+解析版)
- 防汛抗旱合同協(xié)議
- 2025年新高考?xì)v史預(yù)測(cè)模擬試卷3(含答案)
- 船舶壓載水和沉積物接收處理技術(shù)要求編制說(shuō)明
- 區(qū)域總經(jīng)銷(xiāo)商合同范本
- 保潔員安全知識(shí)培訓(xùn)課件
- 行政管理本科畢業(yè)論文-鄉(xiāng)鎮(zhèn)政府公共政策執(zhí)行力存在的問(wèn)題及對(duì)策研究
- 政治薪火相傳的傳統(tǒng)美德教學(xué)設(shè)計(jì) 2024-2025學(xué)年七年級(jí)道德與法治下冊(cè)(統(tǒng)編版2024)
- 2024-2025學(xué)年七年級(jí)數(shù)學(xué)北師大版(2024)下學(xué)期期中考試模擬卷A卷(含解析)
評(píng)論
0/150
提交評(píng)論